基于二值和三值憶阻器模型構(gòu)建的混沌系統(tǒng)的特性分析
doi: 10.11999/JEIT221083
-
杭州電子科技大學(xué)電子信息學(xué)院 杭州 310000
Characteristic Analysis of Chaotic System Based on Binary-valued and Tri-valued Memristor Models
-
School of Electronic Information, Hangzhou Dianzi University, Hangzhou 310000, China
-
摘要: 近年來,基于憶阻器的非線性動(dòng)力學(xué)問題備受關(guān)注。該文以二值和三值憶阻器為例分析了二值和多值憶阻器對(duì)于混沌系統(tǒng)動(dòng)力特性的影響。首先,將二值憶阻器引入Chen系統(tǒng),構(gòu)建了一個(gè)4維的基于二值憶阻器的混沌系統(tǒng)(BMCS)。其次,使用三值憶阻器替換上述系統(tǒng)中的二值憶阻器,構(gòu)建一個(gè)4維的基于三值憶阻器的混沌系統(tǒng)(TMCS)。通過理論分析與數(shù)值仿真,從多個(gè)角度對(duì)比了兩個(gè)混沌系統(tǒng)之間的動(dòng)力學(xué)特性差異,如Lyapunov指數(shù)、分岔圖、系統(tǒng)的平衡點(diǎn)、系統(tǒng)穩(wěn)定性、對(duì)初值的敏感性以及系統(tǒng)的復(fù)雜度分析等。結(jié)果表明,兩個(gè)基于憶阻器的混沌系統(tǒng)都具有無窮多個(gè)平衡點(diǎn),二者產(chǎn)生的吸引子均為隱藏吸引子,且都存在的暫態(tài)混沌現(xiàn)象,但三值憶阻混沌系統(tǒng)具有超混沌特性,且相比二值憶阻混沌系統(tǒng)具有更強(qiáng)的初值敏感性以及更大的參數(shù)取值區(qū)間。分析得出基于三值憶阻器構(gòu)建的混沌系統(tǒng)比基于二值憶阻器的混沌系統(tǒng)能夠產(chǎn)生更為復(fù)雜的動(dòng)力學(xué)特性,混沌信號(hào)也更為復(fù)雜。
-
關(guān)鍵詞:
- 二值憶阻器 /
- 三值憶阻器 /
- 超混沌 /
- 隱藏吸引子 /
- 系統(tǒng)復(fù)雜度
Abstract: In recent years, nonlinear dynamics problems based on memristors have received much attention. In this paper, binary-valued and tri-valued memristors are used as examples to analyze the influence of binary-valued and multi-value memristors on the dynamic characteristics of chaotic systems. Firstly, the binary-valued memristor is introduced into the Chen system, and a four-dimensional Binary-valued Memristor-based Chaotic System(BMCS) is constructed. Secondly, a tri-valued memristor is used to replace the binary-valued memristor in the above system, and a four-dimensional Tri-valued Memristor-based Chaotic System(TMCS) is constructed. Through theoretical analysis and numerical simulation, the differences of dynamic characteristics between the two chaotic systems are compared from multiple perspectives, such as Lyapunov exponent, bifurcation diagram, equilibrium point of the system, system stability, sensitivity to initial value and system complexity analysis, etc. The results show that the two memristor-based chaotic systems have infinite equilibrium points, the attractors generated by both are hidden attractors, and both have transient chaotic phenomena, but the Tri-valued memristor chaotic system has Hyper-chaos, and has stronger initial value sensitivity than Binary-valued memristor chaotic system. Further, the Tri-valued memristor chaotic system has a larger parameter value interval than the Binary-valued memristor chaotic system to obtain chaotic sequences with sufficiently high complexity. Through analysis, it is concluded that the chaotic system based on Tri-valued memristor can generate more complex dynamic characteristics and more complex chaotic signal than the chaotic system based on binary-valued memristor.-
Key words:
- Binary-valued memristor /
- Tri-valued memristor /
- Hyper-chaos /
- Hidden attractors /
- System complexity
-
表 1 混沌系統(tǒng)的Lyapunov指數(shù)及Lyapunov維數(shù)
混沌系統(tǒng) 公式 LE1 LE2 LE3 LE4 DL 超混沌 BMCS 式(5) 2.3090 –0.0017 –0.0795 –18.2281 3.1222 否 TMCS 式(6) 2.4818 0.1578 0.0017 –18.6413 3.1417 是 下載: 導(dǎo)出CSV
表 2 序列相關(guān)性的對(duì)照比較
混沌系統(tǒng) X1,X2的相關(guān)性 Y1,Y2的相關(guān)性 Z1,Z2的相關(guān)性 W1,W2的相關(guān)性 BMCS –0.0122 –0.0137 –0.0207 0.1530 TMCS –0.0085 –0.0068 0.0017 –0.0055 下載: 導(dǎo)出CSV
表 3 不同參數(shù)c對(duì)應(yīng)的Lyapunov指數(shù)值
參數(shù)c LE1 LE2 LE3 LE4 系統(tǒng)狀態(tài) 25 2.3090 0.0007 –0.0329 –23.8567 混沌 31 2.3090 –0.0017 –0.0795 –18.2281 混沌 36 0.0068 –0.0111 –5.4995 –5.4962 周期 下載: 導(dǎo)出CSV
表 4 不同參數(shù)下TMCS對(duì)應(yīng)的Lyapunov指數(shù)值
參數(shù)c LE1 LE2 LE3 LE4 系統(tǒng)狀態(tài) 25 2.2273 –0.0066 –0.0628 –18.6413 混沌 31 2.4818 0.1578 0.0017 –18.6413 超混沌 36 0.0087 –0.0090 –5.5039 –5.4958 周期 下載: 導(dǎo)出CSV
-
[1] WANG Xiaoyuan, GAO Meng, IU H H C, et al. Tri-valued memristor-based hyper-chaotic system with hidden and coexistent attractors[J]. Chaos, Solitons & Fractals, 2022, 159: 112177. doi: 10.1016/j.chaos.2022.112177 [2] GUO Mei, YANG Wenyan, XUE Youbao, et al. Multistability in a physical memristor-based modified Chua’s circuit[J]. Chaos, 2019, 29(4): 043114. doi: 10.1063/1.5089293 [3] ZHANG Xinrui, WANG Xiaoyuan, GE Zhenyu, et al. A novel memristive neural network circuit and its application in character recognition[J]. Micromachines, 2022, 13(12): 2074. doi: 10.3390/mi13122074 [4] ZHOU Lili and TAN Fei. A chaotic secure communication scheme based on synchronization of double-layered and multiple complex networks[J]. Nonlinear Dynamics, 2019, 96(2): 869–883. doi: 10.1007/s11071-019-04828-7 [5] YANG Sen, TONG Xiaojun, WANG Zhu, et al. Efficient color image encryption algorithm based on 2D coupled chaos and multi-objective optimized S-box[J]. Physica Scripta, 2022, 97(4): 045204. doi: 10.1088/1402-4896/ac59fa [6] WANG Xiaoyuan, GAO Meng, MIN Xiaotao, et al. On the use of memristive hyperchaotic system to design color image encryption scheme[J]. IEEE Access, 2020, 8: 182240–182248. doi: 10.1109/ACCESS.2020.3027480 [7] ITOH M and CHUA L O. Memristor oscillators[J]. International Journal of Bifurcation and Chaos, 2008, 18(11): 3183–3206. doi: 10.1142/S0218127408022354 [8] TAN Qiwei, ZENG Yicheng, and LI Zhijun. A simple inductor-free memristive circuit with three line equilibria[J]. Nonlinear Dynamics, 2018, 94(3): 1585–1602. doi: 10.1007/s11071-018-4443-3 [9] 秦銘宏, 賴強(qiáng), 吳永紅. 具有無窮共存吸引子的簡(jiǎn)單憶阻混沌系統(tǒng)的分析與實(shí)現(xiàn)[J]. 物理學(xué)報(bào), 2022, 71(16): 160502. doi: 10.7498/aps.71.20220593QIN Minghong, LAI Qiang, and WU Yonghong. Analysis and implementation of simple four-dimensional memristive chaotic system with infinite coexisting attractors[J]. Acta Physics Sinica, 2022, 71(16): 160502. doi: 10.7498/aps.71.20220593 [10] WANG Xiaoyuan, YU Jun, JIN Chenxi, et al. Chaotic oscillator based on memcapacitor and meminductor[J]. Nonlinear Dynamics, 2019, 96(1): 161–173. doi: 10.1007/s11071-019-04781-5 [11] MIN Xiaotao, WANG Xiaoyuan, ZHOU Pengfei, et al. An optimized memristor-based hyperchaotic system with controlled hidden attractors[J]. IEEE Access, 2019, 7: 124641–124646. doi: 10.1109/ACCESS.2019.2938183 [12] WANG Xiaoyuan, MIN Xiaotao, ZHOU Pengfei, et al. Hyperchaotic circuit based on memristor feedback with multistability and symmetries[J]. Complexity, 2020, 2020: 2620375. doi: 10.1155/2020/2620375 [13] LAI Qiang, WAN Zhiqiang, KUATE P D K, et al. Coexisting attractors, circuit implementation and synchronization control of a new chaotic system evolved from the simplest memristor chaotic circuit[J]. Communications in Nonlinear Science and Numerical Simulation, 2020, 89: 105341. doi: 10.1016/j.cnsns.2020.105341 [14] WANG Chunhua, ZHOU Ling, and WU Renping. The design and realization of a hyper-chaotic circuit based on a flux-controlled memristor with linear memductance[J]. Journal of Circuits, Systems and Computers, 2018, 27(3): 1850038. doi: 10.1142/S021812661850038X [15] 張貴重, 全旭, 劉嵩. 一個(gè)具有超級(jí)多穩(wěn)定性的憶阻混沌系統(tǒng)的分析與FPGA實(shí)現(xiàn)[J]. 物理學(xué)報(bào), 2022, 71(24): 240502. doi: 10.7498/aps.71.20221423ZHANG Guizhong, QUAN Xu, and LIU Song. Analysis and FPGA implementation of memristor chaotic system with extreme multistability[J]. Acta Physica Sinica, 2022, 71(24): 240502. doi: 10.7498/aps.71.20221423 [16] WANG Xiaoyuan, ZHOU Pengfei, JIN Chenxi, et al. Mathematic modeling and circuit implementation on multi-valued memristor[C]. 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Seville, Spain, 2020: 1–5. [17] WANG Xiaoyuan, ZHANG Xue, and GAO Meng. A novel voltage-controlled tri-valued memristor and its application in chaotic system[J]. Complexity, 2020, 2020: 6949703. doi: 10.1155/2020/6949703 [18] CHEN Guanrong and UETA T. Yet another chaotic attractor[J]. International Journal of Bifurcation and Chaos, 1999, 9(7): 1465–1466. doi: 10.1142/S0218127499001024 [19] HUA Zhongyun and ZHOU Yicong. Dynamic parameter-control chaotic system[J]. IEEE Transactions on Cybernetics, 2016, 46(12): 3330–3341. doi: 10.1109/TCYB.2015.2504180 [20] HU Gang, WANG Kejun, and LIU Liangliang. Detection line spectrum of ship radiated noise based on a new 3D chaotic system[J]. Sensors, 2021, 21(5): 1610. doi: 10.3390/s21051610 -