一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言?xún)?nèi)容
驗(yàn)證碼

DR-GAN:一種無(wú)監(jiān)督學(xué)習(xí)的探地雷達(dá)雜波抑制方法

雷文太 毛凌青 龐澤邦 任強(qiáng) 王成浩 隋浩 辛常樂(lè)

雷文太, 毛凌青, 龐澤邦, 任強(qiáng), 王成浩, 隋浩, 辛常樂(lè). DR-GAN:一種無(wú)監(jiān)督學(xué)習(xí)的探地雷達(dá)雜波抑制方法[J]. 電子與信息學(xué)報(bào), 2023, 45(10): 3776-3785. doi: 10.11999/JEIT221072
引用本文: 雷文太, 毛凌青, 龐澤邦, 任強(qiáng), 王成浩, 隋浩, 辛常樂(lè). DR-GAN:一種無(wú)監(jiān)督學(xué)習(xí)的探地雷達(dá)雜波抑制方法[J]. 電子與信息學(xué)報(bào), 2023, 45(10): 3776-3785. doi: 10.11999/JEIT221072
LEI Wentai, MAO Lingqing, PANG Zebang, REN Qiang, WANG Chenghao, SUI Hao, XIN Changle. DR-GAN: An Unsupervised Learning Approach to Clutter Suppression for Ground Penetrating Radar[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3776-3785. doi: 10.11999/JEIT221072
Citation: LEI Wentai, MAO Lingqing, PANG Zebang, REN Qiang, WANG Chenghao, SUI Hao, XIN Changle. DR-GAN: An Unsupervised Learning Approach to Clutter Suppression for Ground Penetrating Radar[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3776-3785. doi: 10.11999/JEIT221072

DR-GAN:一種無(wú)監(jiān)督學(xué)習(xí)的探地雷達(dá)雜波抑制方法

doi: 10.11999/JEIT221072
基金項(xiàng)目: 中國(guó)電波傳播研究所穩(wěn)定支持科研經(jīng)費(fèi)(A131903W13)
詳細(xì)信息
    作者簡(jiǎn)介:

    雷文太:男,教授,研究方向?yàn)樘降乩走_(dá)信號(hào)處理技術(shù)

    毛凌青:男,碩士生,研究方向?yàn)樘降乩走_(dá)信號(hào)處理技術(shù)

    龐澤邦:男,博士生,研究方向?yàn)榛谏疃葘W(xué)習(xí)的探地雷達(dá)智能數(shù)據(jù)處理

    任強(qiáng):男,高級(jí)工程師,研究方向?yàn)樘降乩走_(dá)系統(tǒng)集成技術(shù)

    王成浩:男,高級(jí)工程師,研究方向?yàn)樘降乩走_(dá)信息處理

    隋浩:男,碩士生,研究方向?yàn)樘降乩走_(dá)信號(hào)處理技術(shù)

    辛常樂(lè):男,碩士生,研究方向?yàn)樘降乩走_(dá)信號(hào)處理技術(shù)

    通訊作者:

    龐澤邦 pangzebang@csu.edu.cn

  • 中圖分類(lèi)號(hào): TN957.52

DR-GAN: An Unsupervised Learning Approach to Clutter Suppression for Ground Penetrating Radar

Funds: The Stable-Support Scientific Project of China Research Institute of Radiowave Propagation (A131903W13)
  • 摘要: 探地雷達(dá)(GPR)是一種基于電磁波的地下無(wú)損探測(cè)技術(shù),廣泛應(yīng)用于市政工程、交通、軍事等領(lǐng)域。在數(shù)據(jù)采集過(guò)程中,由于發(fā)射天線(xiàn)和接收天線(xiàn)之間的耦合、起伏地面的散射以及地下隨機(jī)媒質(zhì)的復(fù)雜性等原因,采集得到的GPR B-scan回波中通常存在雜波,雜波嚴(yán)重影響了地下目標(biāo)的檢測(cè)和特征提取。該文提出一種用于GPR B-scan圖像雜波抑制的解糾纏表示生成對(duì)抗網(wǎng)絡(luò)(DR-GAN),設(shè)計(jì)了目標(biāo)特征編碼器和雜波特征編碼器用來(lái)提取GPR B-scan圖像中的目標(biāo)特征和雜波特征,設(shè)計(jì)了雜波抑制生成器用來(lái)獲取雜波抑制后的GPR B-scan圖像。與現(xiàn)有的基于監(jiān)督學(xué)習(xí)的GPR雜波抑制方法相比,該方法在網(wǎng)絡(luò)訓(xùn)練時(shí)不需要成對(duì)的匹配數(shù)據(jù),可以更好地應(yīng)用于實(shí)測(cè)GPR圖像的雜波抑制。在仿真和實(shí)測(cè)GPR數(shù)據(jù)上的實(shí)驗(yàn)結(jié)果表明,DR-GAN這一無(wú)監(jiān)督學(xué)習(xí)網(wǎng)絡(luò)具有更好的雜波抑制性能。對(duì)石英砂中埋設(shè)的鋼筋進(jìn)行數(shù)據(jù)采集,運(yùn)用DR-GAN對(duì)含雜波的實(shí)測(cè)數(shù)據(jù)進(jìn)行處理,處理結(jié)果的改善系數(shù)(IF)指標(biāo)較現(xiàn)有的魯棒非負(fù)矩陣分解(RNMF)方法提高了17.85 dB。
  • 圖  1  DR-GAN的網(wǎng)絡(luò)框架

    圖  2  GPR圖像的雜波抑制流程

    圖  3  DR-GAN的編碼器與生成器的網(wǎng)絡(luò)結(jié)構(gòu)

    圖  4  DR-GAN的判別器網(wǎng)絡(luò)結(jié)構(gòu)

    圖  5  仿真場(chǎng)景模型

    圖  6  DR-GAN在仿真數(shù)據(jù)上的雜波抑制效果

    圖  7  不同方法對(duì)仿真數(shù)據(jù)的雜波抑制效果

    圖  8  實(shí)測(cè)場(chǎng)景

    圖  9  實(shí)測(cè)雜波數(shù)據(jù)的制作

    圖  10  DR-GAN在實(shí)測(cè)數(shù)據(jù)上的雜波抑制效果

    圖  11  不同方法對(duì)實(shí)測(cè)數(shù)據(jù)的雜波抑制效果

    表  1  仿真場(chǎng)景參數(shù)

    模型參數(shù)掃描場(chǎng)景參數(shù)
    模型尺寸1.8 m×0.002 m×0.45 m發(fā)射源波形瑞克子波
    單元格大小0.002 m×0.002 m×0.002 m發(fā)射中心頻率2 GHz
    土壤沙子重量百分比50%仿真時(shí)窗10 ns
    土壤粘土重量百分比50%發(fā)射天線(xiàn)起點(diǎn)(0.1 m,0.002 m,0.4 m)
    土壤的容重2.0 g/cm3接收天線(xiàn)起點(diǎn)(0.2 m,0.002 m,0.4 m)
    土壤的沙粒密度2.66 g/cm3每次掃描天線(xiàn)移動(dòng)距離0.01 m
    土壤體積含水率范圍0.001~0.150目標(biāo)形狀圓柱、方柱
    土壤材料種類(lèi)50種圓柱半徑0.03~0.05 m
    土壤厚度0.4 m方柱邊長(zhǎng)0.04~0.06 m
    土壤表面高度起伏范圍0.38~0.41 m目標(biāo)高度0.2~0.3 m
    目標(biāo)水平位置0.35~1.45 m
    下載: 導(dǎo)出CSV

    表  2  各種雜波抑制算法的平均PSNR(dB)/平均SSIM

    目標(biāo)類(lèi)型MSSVDNMFRPCARNMFRAE本文DR-GAN
    PVC圓柱體0.85/0.01422.38/0.36522.23/0.30523.54/0.25922.72/0.20522.56/0.15436.66/0.965
    空洞圓柱體6.62/0.06022.96/0.42022.96/0.39825.94/0.47024.35/0.33822.99/0.36342.73/0.989
    金屬圓柱體12.58/0.12625.26/0.58825.18/0.56227.59/0.61225.86/0.47125.92/0.43244.70/0.992
    PVC方柱體6.41/0.02123.09/0.35724.06/0.36527.11/0.43725.84/0.35125.22/0.28743.65/0.980
    空洞方柱體12.45/0.07225.79/0.53525.38/0.49428.78/0.59726.43/0.44425.80/0.36947.92/0.993
    金屬方柱體16.97/0.18125.97/0.53825.39/0.50429.15/0.65227.45/0.53826.72/0.45848.00/0.993
    下載: 導(dǎo)出CSV

    表  3  各種雜波抑制方法的平均用時(shí)(s)

    MSSVDNMFRPCARNMFRAEDR-GAN(GPU)
    時(shí)間0.002 90.010 20.013 62.083 96.063 63.872 60.103 0
    下載: 導(dǎo)出CSV

    表  4  實(shí)測(cè)數(shù)據(jù)雜波抑制的平均IF(dB)

    目標(biāo)類(lèi)型MSSVDNMFRPCARNMFRAE本文DR-GAN
    空心PVC管10.4924.1924.5920.6824.7412.0141.34
    空心塑料瓶13.2624.5023.8223.1824.6718.4045.79
    鋼筋13.1926.0725.9626.2828.1626.6546.01
    下載: 導(dǎo)出CSV
  • [1] 喬爾, 雷文太, 童孝忠, 周腸, 等譯. 探地雷達(dá)理論與應(yīng)用[M]. 北京: 電子工業(yè)出版社, 2011.

    JOL H M, LEI Wentai, TONG Xiaozhong, ZHOU Yang, et al. translation. Ground Penetrating Radar: Theory and Applications[M]. Beijing: Publishing House of Electronics Industry, 2011.
    [2] 劉瀾波, 錢(qián)榮毅. 探地雷達(dá): 淺表地球物理科學(xué)技術(shù)中的重要工具[J]. 地球物理學(xué)報(bào), 2015, 58(8): 2606–2617. doi: 10.6038/cjg20150802

    LIU Lanbo and QIAN Rongyi. Ground penetrating radar: A critical tool in near-surface geophysics[J]. Chinese Journal of Geophysics, 2015, 58(8): 2606–2617. doi: 10.6038/cjg20150802
    [3] TONG Zheng, YUAN Dongdong, GAO Jie, et al. Pavement-distress detection using ground-penetrating radar and network in networks[J]. Construction and Building Materials, 2020, 233: 117352. doi: 10.1016/j.conbuildmat.2019.117352
    [4] 劉海, 黃肇剛, 岳云鵬, 等. 地下管線(xiàn)滲漏環(huán)境下探地雷達(dá)信號(hào)特征分析[J]. 電子與信息學(xué)報(bào), 2022, 44(4): 1257–1264. doi: 10.11999/JEIT211213

    LIU Hai, HUANG Zhaogang, YUE Yunpeng, et al. Characteristics analysis of ground penetrating radar signals for groundwater pipe leakage environment[J]. Journal of Electronics &Information Technology, 2022, 44(4): 1257–1264. doi: 10.11999/JEIT211213
    [5] SOLIMENE R, CUCCARO A, DELL' AVERSANO A, et al. Ground clutter removal in GPR surveys[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(3): 792–798. doi: 10.1109/JSTARS.2013.2287016
    [6] ABUJARAD F, NADIM G, and OMAR A. Clutter reduction and detection of landmine objects in ground penetrating radar data using Singular Value Decomposition (SVD)[C]. The 3rd International Workshop on Advanced Ground Penetrating Radar, Delft, Netherlands, 2005: 37–41.
    [7] CHEN Gaoxiang, FU Liyun, CHEN Kanfu, et al. Adaptive ground clutter reduction in ground-penetrating radar data based on principal component analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(6): 3271–3282. doi: 10.1109/TGRS.2018.2882912
    [8] ABUJARAD F and OMAR A. Comparison of independent component analysis (ICA) algorithms for GPR detection of non-metallic land mines[J]. SPIE, 2006, 6365: 636516.
    [9] KUMLU D and ERER I. Performance evaluation of NMF methods with different divergence metrics for landmine detection in GPR[J]. SPIE, 2018, 10794: 107940I.
    [10] TEMLIOGLU E and ERER I. Clutter removal in ground-penetrating radar images using morphological component analysis[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12): 1802–1806. doi: 10.1109/LGRS.2016.2612582
    [11] KUMLU D and ERER I. Improved clutter removal in GPR by robust nonnegative matrix factorization[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(6): 958–962. doi: 10.1109/LGRS.2019.2937749
    [12] SONG Xiaosong, XIANG Deliang, ZHOU Kai, et al. Improving RPCA-based clutter suppression in GPR detection of antipersonnel mines[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(8): 1338–1342. doi: 10.1109/LGRS.2017.2711251
    [13] NI Zhikang, YE Shengbo, SHI Cheng, et al. Clutter suppression in GPR B-scan images using robust autoencoder[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 3500705. doi: 10.1109/LGRS.2020.3026007
    [14] ZHOU Huilin, WANG Yi, LIU Qiegen, et al. RNMF-guided deep network for signal separation of GPR without labeled data[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 3507705. doi: 10.1109/LGRS.2021.3099161
    [15] GENG Jianrong, HE Juan, YE Hongxia, et al. A clutter suppression method based on LSTM network for ground penetrating radar[J]. Applied Sciences, 2022, 12(13): 6457. doi: 10.3390/app12136457
    [16] TEMLIOGLU E and ERER I. A novel convolutional autoencoder-based clutter removal method for buried threat detection in ground-penetrating radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5103313. doi: 10.1109/TGRS.2021.3098122
    [17] NI Zhikang, SHI Cheng, PAN Jun, et al. Declutter-GAN: GPR B-scan data clutter removal using conditional generative adversarial nets[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4023105. doi: 10.1109/LGRS.2022.3159788
    [18] HUANG Yongqiang, XIA Wenjun, LU Zexin, et al. Noise-powered disentangled representation for unsupervised speckle reduction of optical coherence tomography images[J]. IEEE Transactions on Medical Imaging, 2021, 40(10): 2600–2614. doi: 10.1109/TMI.2020.3045207
    [19] LEE H Y, TSENG H Y, HUANG Jiabin, et al. Diverse image-to-image translation via disentangled representations[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 36–52.
    [20] ABROL V, SHARMA P, and PATRA A. Improving generative modelling in VAEs using multimodal prior[J]. IEEE Transactions on Multimedia, 2021, 23: 2153–2161. doi: 10.1109/TMM.2020.3008053
    [21] ISOLA P, ZHU Junyan, ZHOU Tinghui, et al. Image-to-image translation with conditional adversarial networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 5967–5976.
    [22] WARREN C, GIANNOPOULOS A, and GIANNAKIS I. gprMax: Open source software to simulate electromagnetic wave propagation for Ground Penetrating Radar[J]. Computer Physics Communications, 2016, 209: 163–170. doi: 10.1016/j.cpc.2016.08.020
  • 加載中
圖(11) / 表(4)
計(jì)量
  • 文章訪(fǎng)問(wèn)數(shù):  1179
  • HTML全文瀏覽量:  563
  • PDF下載量:  196
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2022-08-15
  • 修回日期:  2023-02-16
  • 網(wǎng)絡(luò)出版日期:  2023-02-22
  • 刊出日期:  2023-10-31

目錄

    /

    返回文章
    返回