一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

面向遙感圖像場(chǎng)景分類的雙知識(shí)蒸餾模型

李大湘 南藝璇 劉穎

李大湘, 南藝璇, 劉穎. 面向遙感圖像場(chǎng)景分類的雙知識(shí)蒸餾模型[J]. 電子與信息學(xué)報(bào), 2023, 45(10): 3558-3567. doi: 10.11999/JEIT221017
引用本文: 李大湘, 南藝璇, 劉穎. 面向遙感圖像場(chǎng)景分類的雙知識(shí)蒸餾模型[J]. 電子與信息學(xué)報(bào), 2023, 45(10): 3558-3567. doi: 10.11999/JEIT221017
LI Daxiang, NAN Yixuan, LIU Ying. A Double Knowledge Distillation Model for Remote Sensing Image Scene Classification[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3558-3567. doi: 10.11999/JEIT221017
Citation: LI Daxiang, NAN Yixuan, LIU Ying. A Double Knowledge Distillation Model for Remote Sensing Image Scene Classification[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3558-3567. doi: 10.11999/JEIT221017

面向遙感圖像場(chǎng)景分類的雙知識(shí)蒸餾模型

doi: 10.11999/JEIT221017
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(62071379),陜西省自然科學(xué)基金(2017KW-013), 西安郵電大學(xué)創(chuàng)新基金(CXJJYL2021055, YJGJ201902)
詳細(xì)信息
    作者簡(jiǎn)介:

    李大湘:男,博士,副教授,研究方向?yàn)檫b感圖像分類、目標(biāo)檢測(cè)與跟蹤、醫(yī)學(xué)圖像識(shí)別、多實(shí)例學(xué)習(xí)與深度學(xué)習(xí)等

    南藝璇:女,碩士生,研究方向?yàn)檫b感圖像分類、圖像分割、圖像檢索、機(jī)器學(xué)習(xí)與模式識(shí)別

    劉穎:女,博士,高級(jí)工程師,研究方向?yàn)閳D像識(shí)別與機(jī)器學(xué)習(xí)等

    通訊作者:

    南藝璇 1010367243@qq.com

  • 中圖分類號(hào): TN911.73; TP751

A Double Knowledge Distillation Model for Remote Sensing Image Scene Classification

Funds: The National Natural Science Foundation of China (62071379), The Natural Science Foundation of Shaanxi Province (2017KW-013), The Innovation Foundation of Xi’an University of Posts and Telecommunications (CXJJYL2021055, YJGJ201902)
  • 摘要: 為了提高輕型卷積神經(jīng)網(wǎng)絡(luò)(CNN)在遙感圖像(RSI)場(chǎng)景分類任務(wù)中的精度,該文設(shè)計(jì)一個(gè)雙注意力(DA)與空間結(jié)構(gòu)(SS)相融合的雙知識(shí)蒸餾(DKD)模型。首先,構(gòu)造新的DA模塊,將其嵌入到ResNet101與設(shè)計(jì)的輕型CNN,分別作為教師與學(xué)生網(wǎng)絡(luò);然后,構(gòu)造DA蒸餾損失函數(shù),將教師網(wǎng)絡(luò)中的DA知識(shí)遷移到學(xué)生網(wǎng)絡(luò)之中,從而增強(qiáng)其對(duì)RSI的局部特征提取能力;最后,構(gòu)造SS蒸餾損失函數(shù),將教師網(wǎng)絡(luò)中的語義提取能力以空間結(jié)構(gòu)的形式遷移到學(xué)生網(wǎng)絡(luò),以增強(qiáng)其對(duì)RSI的高層語義表示能力。基于兩個(gè)標(biāo)準(zhǔn)數(shù)據(jù)集AID和NWPU-45的對(duì)比實(shí)驗(yàn)結(jié)果表明,在訓(xùn)練比例為20%的情況下,經(jīng)知識(shí)蒸餾之后的學(xué)生網(wǎng)絡(luò)性能分別提高了7.69%和7.39%,且在參量更少的情況下性能也優(yōu)于其他方法。
  • 圖  1  設(shè)計(jì)的DKD模型框架結(jié)構(gòu)示意圖

    圖  2  雙注意力(DA)模塊架構(gòu)示意圖

    圖  3  教師網(wǎng)絡(luò)訓(xùn)練3元孿生框架示意圖

    圖  4  SS知識(shí)蒸餾

    圖  5  AID數(shù)據(jù)集訓(xùn)練比例為20%時(shí)的混淆矩陣

    圖  6  NWPU-45數(shù)據(jù)集訓(xùn)練比例為20%時(shí)的混淆矩陣

    圖  7  使用Grad-CAM進(jìn)行可視化對(duì)比

    表  1  學(xué)生網(wǎng)絡(luò)具體參數(shù)設(shè)計(jì)

    網(wǎng)絡(luò)層名輸出尺寸計(jì)算方法
    Conv1112×1127×7,64,stride=2
    DA112×112DA模塊
    Conv2_x56×563×3 max pool, stride=2
    [3×3, 64; 3×3,64]
    Conv3_x28×28[3×3, 128; 3×3,64]
    Conv4_x14×14[3×3, 256; 3×3,64]
    Conv5_x7×7[3×3, 512; 3×3,64]
    1×1average pool,45-d fc, softmax
    下載: 導(dǎo)出CSV
    算法1 雙知識(shí)蒸餾(DKD)學(xué)生網(wǎng)絡(luò)訓(xùn)練及測(cè)試
     輸入:訓(xùn)練圖像$ D = \{ ({\text{IM}}{{\text{G}}_n},{y_n}):n = 1,2, \cdots ,N\} $,網(wǎng)絡(luò)超參
        (Epoches, BS與lr),測(cè)試圖像
        $ {\text{Tst}} = \{ ({\text{IM}}{{\text{G}}_m},{y_m}):m = 1,2, \cdots ,M\} $
     輸出:學(xué)生網(wǎng)絡(luò)參數(shù)${\varOmega _{\text{S} } }$及測(cè)試圖像分類精度
     準(zhǔn)備:將D中的訓(xùn)練圖像組成3元組,采用圖3所示孿生框架訓(xùn)練
        教師網(wǎng)絡(luò)${\varOmega ^{ {\text{TE} } } }$;
     For epoch in Epoches:
       (1) 根據(jù)批大小BS,對(duì)D中的訓(xùn)練圖像進(jìn)行分批;
       (2) 每批圖像送入教師網(wǎng)絡(luò)${\varOmega ^{ {\text{TE} } } }$,得到的高層語義特征
         ${\text{Tb}} = \{ {t_i}|i = 1,2, \cdots ,{\text{BS}}\} $;
       (3) 每批圖像送入學(xué)生網(wǎng)絡(luò)${\varOmega _{\text{S} } }$,得到的高層語義特征
         ${\text{Sb}} = \{ {s_i}|i = 1,2, \cdots ,{\text{BS}}\} $及預(yù)測(cè)標(biāo)簽$\{ {\tilde y_i}\} _{i = 1}^{{\text{BS}}}$;
       (4) 用式(15)計(jì)算${L_{{\text{HTL}}}}$,優(yōu)化器通過反向傳播更新學(xué)生網(wǎng)絡(luò)
         參數(shù)${\varOmega _{\text{S} } }$;
       (5) 采用余弦衰減策略更新學(xué)習(xí)率lr。
     End for
       (6) 對(duì) $ \forall {\text{IM}}{{\text{G}}_m} \in {\text{Tst}} $,將${\text{IM}}{{\text{G}}_m}$輸入學(xué)生網(wǎng)絡(luò)${\varOmega _{\text{S} } }$,得到其
         類別預(yù)測(cè)結(jié)果${ { {\tilde y} }_{{m} } }$;
       (7) 根據(jù)$ \{ ({\bar y_m},{y_m}):m = 1,2, \cdots ,M\} $,統(tǒng)計(jì)分類精度且輸出。
    下載: 導(dǎo)出CSV

    表  2  不同訓(xùn)練比例下消融實(shí)驗(yàn)的OA值(%)

    AID訓(xùn)練比例(%)NWPU-45訓(xùn)練比例(%)
    20501020
    基線87.5289.4386.2788.48
    +DA93.0894.3691.6893.65
    +SS93.9294.6392.9194.12
    +DKD95.2197.0493.8895.87
    教師95.9397.6394.4796.52
    下載: 導(dǎo)出CSV

    表  3  教師與學(xué)生網(wǎng)絡(luò)性能比較(以AID數(shù)據(jù)集(50%)為例)

    ModelParameters (MB)AvgTime (ms)Accuracy (%)
    教師42.5614.897.63
    學(xué)生(DKD)4.924.3797.04
    ResNet50[9]25.568.5395.49
    VGG-16[17]138.3616.4392.63
    SCViT[18]85.6120.189.23
    下載: 導(dǎo)出CSV

    表  4  基于AID與NWPU-45數(shù)據(jù)集的綜合對(duì)比實(shí)驗(yàn)結(jié)果(%)

    方法AID訓(xùn)練比例(%)NWPU-45訓(xùn)練比例(%)
    20501020
    VGG16+MSCP[22]91.5294.4288.3291.56
    ARCNet-VGG[19]88.7593.1085.6090.87
    CNN-CapsNet[23]93.7996.3289.0389.03
    SCCov[24]93.1296.1089.3092.10
    GBNet[25]92.2095.4890.0392.35
    MF2Net[26]93.8295.9390.1792.73
    MobileNet[20]88.5390.9180.3283.26
    ViT-B-16[21]93.8195.9090.9693.36
    XU et al.[27]94.1796.1990.2393.25
    DKD (本文)95.2197.0493.8895.87
    下載: 導(dǎo)出CSV
  • [1] 馬少鵬, 梁路, 滕少華. 一種輕量級(jí)的高光譜遙感圖像分類方法[J]. 廣東工業(yè)大學(xué)學(xué)報(bào), 2021, 38(3): 29–35. doi: 10.12052/gdutxb.200153

    MA Shaopeng, LIANG Lu, and TENG Shaohua. A lightweight hyperspectral remote sensing image classification method[J]. Journal of Guangdong University of Technology, 2021, 38(3): 29–35. doi: 10.12052/gdutxb.200153
    [2] PAN Deng, ZHANG Meng, and ZHANG Bo. A generic FCN-based approach for the road-network extraction from VHR remote sensing images–using OpenStreetMap as benchmarks[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 2662–2673. doi: 10.1109/JSTARS.2021.3058347
    [3] 姜亞楠, 張欣, 張春雷, 等. 基于多尺度LBP特征融合的遙感圖像分類[J]. 自然資源遙感, 2021, 33(3): 36–44. doi: 10.6046/zrzyyg.2020303

    JIANG Yanan, ZHANG Xin, ZHANG Chunlei, et al. Classification of remote sensing images based on multi-scale feature fusion using local binary patterns[J]. Remote Sensing for Natural Resources, 2021, 33(3): 36–44. doi: 10.6046/zrzyyg.2020303
    [4] CHAIB S, GU Yanfeng, and YAO Hongxun. An informative feature selection method based on sparse PCA for VHR scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(2): 147–151. doi: 10.1109/LGRS.2015.2501383
    [5] 李彥甫, 范習(xí)健, 楊緒兵, 等. 基于自注意力卷積網(wǎng)絡(luò)的遙感圖像分類[J]. 北京林業(yè)大學(xué)學(xué)報(bào), 2021, 43(10): 81–88. doi: 10.12171/j.1000-1522.20210196

    LI Yanfu, FAN Xijian, YANG Xubing, et al. Remote sensing image classification framework based on self-attention convolutional neural network[J]. Journal of Beijing Forestry University, 2021, 43(10): 81–88. doi: 10.12171/j.1000-1522.20210196
    [6] XU Kejie, HUANG Hong, DENG Peifang, et al. Deep feature aggregation framework driven by graph convolutional network for scene classification in remote sensing[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(10): 5751–5765. doi: 10.1109/TNNLS.2021.3071369
    [7] CHEN Sibao, WEI Qingsong, WANG Wenzhong, et al. Remote sensing scene classification via multi-branch local attention network[J]. IEEE Transactions on Image Processing, 2021, 31: 99–109. doi: 10.1109/TIP.2021.3127851
    [8] CHEN Xi, XING Zhiqiang, and CHENG Yuyang. Introduction to model compression knowledge distillation[C]. 2021 6th International Conference on Intelligent Computing and Signal Processing, Xi'an, China, 2021: 1464–1467.
    [9] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
    [10] LUO Yana and WANG Zhongsheng. An improved ResNet algorithm based on CBAM[C]. 2021 International Conference on Computer Network, Electronic and Automation, Xi'an, China, 2021: 121–125.
    [11] KE Xiao, ZHANG Xiaoling, ZHANG Tianwen, et al. SAR ship detection based on an improved faster R-CNN using deformable convolution[C]. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 2021: 3565–3568.
    [12] WANG Qilong, WU Banggu, ZHU Pengfei, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 11531–11539.
    [13] ZENG Weiyu, WANG Tianlei, CAO Jiuwen, et al. Clustering-guided pairwise metric triplet loss for person reidentification[J]. IEEE Internet of Things Journal, 2022, 9(16): 15150–15160. doi: 10.1109/JIOT.2022.3147950
    [14] PARK W, KIM D, LU Yan, et al. Relational knowledge distillation[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 3962–3971.
    [15] XIA Guisong, HU Jingwen, HU Fan, et al. AID: A benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 3965–3981. doi: 10.1109/TGRS.2017.2685945
    [16] CHENG Gong, HAN Junwei, and LU Xiaoqiang. Remote sensing image scene classification: Benchmark and State of the Art[J]. Proceedings of the IEEE, 2017, 105(10): 1865–1883. doi: 10.1109/JPROC.2017.2675998
    [17] TUN N L, GAVRILOV A, TUN N M, et al. Remote sensing data classification using A hybrid pre-trained VGG16 CNN-SVM classifier[C]. 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, St. Petersburg, Russia, 2021: 2171–2175.
    [18] LV Pengyuan, WU Wenjun, ZHONG Yanfei, et al. SCViT: A spatial-channel feature preserving vision transformer for remote sensing image scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4409512. doi: 10.1109/TGRS.2022.3157671
    [19] WANG Qi, LIU Shaoteng, CHANUSSOT J, et al. Scene classification with recurrent attention of VHR remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2): 1155–1167. doi: 10.1109/TGRS.2018.2864987
    [20] PAN Haihong, PANG Zaijun, WANG Yaowei, et al. A new image recognition and classification method combining transfer learning algorithm and mobilenet model for welding defects[J]. IEEE Access, 2020, 8: 119951–119960. doi: 10.1109/ACCESS.2020.3005450
    [21] DOSOVITSKI A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[C/OL]. The 9th International Conference on Learning Representations, 2021.
    [22] HE Nanjun, FANG Leyuan, LI Shutao, et al. Remote sensing scene classification using multilayer stacked covariance pooling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(12): 6899–6910. doi: 10.1109/TGRS.2018.2845668
    [23] ZHANG Wei, TANG Ping, and ZHAO Lijun. Remote sensing image scene classification using CNN-CapsNet[J]. Remote Sensing, 2019, 11(5): 494. doi: 10.3390/rs11050494
    [24] HE Nanjun, FANG Leyuan, LI Shutao, et al. Skip-connected covariance network for remote sensing scene classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(5): 1461–1474. doi: 10.1109/TNNLS.2019.2920374
    [25] SUN Hao, LI Siyuan, ZHENG Xiangtao, et al. Remote sensing scene classification by gated bidirectional network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(1): 82–96. doi: 10.1109/TGRS.2019.2931801
    [26] XU Kejie, HUANG Hong, LI Yuan, et al. Multilayer feature fusion network for scene classification in remote sensing[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(11): 1894–1898. doi: 10.1109/LGRS.2019.2960026
    [27] XU Chengjun, ZHU Guobin, and SHU Jingqian. A lightweight intrinsic mean for remote sensing classification with lie group kernel function[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 18(10): 1741–1745. doi: 10.1109/LGRS.2020.3007775
    [28] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization[C]. The 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 618–626.
  • 加載中
圖(7) / 表(5)
計(jì)量
  • 文章訪問數(shù):  621
  • HTML全文瀏覽量:  442
  • PDF下載量:  124
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2022-08-03
  • 修回日期:  2023-01-15
  • 網(wǎng)絡(luò)出版日期:  2023-02-22
  • 刊出日期:  2023-10-31

目錄

    /

    返回文章
    返回