基于符合計(jì)數(shù)濾波優(yōu)化的光量子成像方法
doi: 10.11999/JEIT220627
-
1.
重慶郵電大學(xué)通信與信息工程學(xué)院 重慶 400065
-
2.
移動(dòng)通信教育部工程研究中心 重慶 400065
Optical Quantum Imaging Method Based on Filter Optimization of Coincidence Counting
-
1.
School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
-
2.
Engineering Research Center of Mobile Communications, Ministry of Education, Chongqing 400065, China
-
摘要: 量子成像(QI)具有抗偵察、抗干擾和高分辨力等特性,是量子光學(xué)領(lǐng)域重要的研究方向。為了解決實(shí)際量子成像過程中因環(huán)境光引起符合計(jì)數(shù)值異常所導(dǎo)致成像質(zhì)量下降的問題,該文提出一種基于符合計(jì)數(shù)濾波優(yōu)化的光量子成像方法。首先,對原始的符合計(jì)數(shù)值進(jìn)行3層離散小波變換(DWT)得到相應(yīng)的小波系數(shù);然后,對小波系數(shù)中的高頻成分進(jìn)行高斯濾波去噪,并通過小波逆變換得到去噪后的符合計(jì)數(shù)值;最后,基于該符合計(jì)數(shù)值,利用線性映射方法實(shí)現(xiàn)對目標(biāo)的量子成像。該文通過仿真分析了圖像像素?cái)?shù)、單像素曝光時(shí)間和符合門寬值對成像結(jié)果的影響,并搭建了實(shí)際的量子成像光路來驗(yàn)證仿真結(jié)果的有效性。
-
關(guān)鍵詞:
- 量子成像 /
- 符合計(jì)數(shù) /
- 小波變換 /
- 高斯濾波 /
- 數(shù)字微鏡器件
Abstract: Quantum Imaging(QI) is an important research direction in the field of quantum optics due to its anti-reconnaissance, anti-interference and high resolution. In order to solve the problem of image quality degradation caused by the abnormal coincidence count value caused by ambient light in the actual quantum imaging process, a photon quantum imaging method based on coincidence count filter optimization is proposed in this paper. Firstly, three-layer Discrete Wavelet Transform(DWT) on the original coincident count values is performed to obtain the corresponding wavelet coefficients. Secondly, Gaussian filtering is performed to denoise the high-frequency components in the wavelet coefficients, and the denoised coincident count values through inverse wavelet transform is obtained in this paper. Finally, according to these coincidence count values, the linear mapping method is used to achieve quantum imaging of the target. In this paper, the influence of image pixel number, single pixel exposure time and coincidence gate width on imaging results by simulation are analyzed, and the actual quantum imaging optical path is built to verify the validity of the simulation analysis. -
表 1 不同圖像像素?cái)?shù)對成像結(jié)果的影響
$ 200 \times 200 $ $ 400 \times 400 $ $ 600 \times 600 $ $ 800 \times 800 $ $1\;000 \times 1\;000$ 去噪前 去噪后 下載: 導(dǎo)出CSV
-
[1] GILABERTE BASSET M, SETZPFANDT F, STEINLECHNER F, et al. Perspectives for applications of quantum imaging[J]. Laser & Photonics Reviews, 2019, 13(10): 1900097. doi: 10.1002/lpor.201900097 [2] 楊蘊(yùn), 李玉, 王玉. 一種數(shù)學(xué)形態(tài)學(xué)的量子圖像去噪方法[J]. 遙感信息, 2018, 33(2): 17–25. doi: 10.3969/j.issn.1000-3177.2018.02.003YANG Yun, LI Yu, and WANG Yu. A mathematical morphology method for quantum image denoising[J]. Remote Sensing Information, 2018, 33(2): 17–25. doi: 10.3969/j.issn.1000-3177.2018.02.003 [3] 王文遠(yuǎn). 基于圖像信噪比選擇優(yōu)化高斯濾波尺度[J]. 電子與信息學(xué)報(bào), 2009, 31(10): 2483–2487. doi: 10.3724/SP.J.1146.2008.01392WANG Wenyuan. Selecting the optimal Gaussian filtering scale via the SNR of image[J]. Journal of Electronics &Information Technology, 2009, 31(10): 2483–2487. doi: 10.3724/SP.J.1146.2008.01392 [4] ZHAO Yuxing, LI Yue, and YANG Baojun. Low-frequency desert noise intelligent suppression in seismic data based on multiscale geometric analysis convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(1): 650–665. doi: 10.1109/TGRS.2019.2938836 [5] 張智, 林栩凌, 何紅艷. 一種基于量子力學(xué)的遙感圖像濾波方法研究[J]. 紅外與激光工程, 2016, 45(S2): S226001. doi: 10.3788/IRLA201645.S226001ZHANG Zhi, LIN Xuling, and HE Hongyan. Filtering method for remote sensing image based on quantum mechanics[J]. Infrared and Laser Engineering, 2016, 45(S2): S226001. doi: 10.3788/IRLA201645.S226001 [6] 畢思文, 陳浩, 帥通, 等. 一種基于雙樹復(fù)小波變換的圖像去噪算法[J]. 無線電工程, 2019, 49(1): 27–31. doi: 10.3969/j.issn.1003-3106.2019.01.06BI Siwen, CHEN Hao, SHUAI Tong, et al. An image denoising algorithm based on double-tree complex wavelet transform[J]. Radio Engineering, 2019, 49(1): 27–31. doi: 10.3969/j.issn.1003-3106.2019.01.06 [7] CHEN Yan, NI Rui, WU Yaodong, et al. Phase-matching controlled orbital angular momentum conversion in periodically poled crystals[J]. Physical Review Letters, 2020, 125(14): 143901. doi: 10.1103/PhysRevLett.125.143901 [8] MAGA?A-LOAIZA O S and BOYD R W. Quantum imaging and information[J]. Reports on Progress in Physics, 2019, 82(12): 124401. doi: 10.1088/1361-6633/ab5005 [9] ABEBE T, GEMECHU N, SHOGILE K, et al. Entanglement quantification using various inseparability criteria for correlated photons[J]. Romanian Journal of Physics, 2020, 65(3/4): 107. [10] SHAPIRO J H and BOYD R W. The physics of ghost imaging[J]. Quantum Information Processing, 2012, 11(4): 949–993. doi: 10.1007/s11128-011-0356-5 [11] XU Chenni and WANG Ligang. Theory of light propagation in arbitrary two-dimensional curved space[J]. Photonics Research, 2021, 9(12): 2486–2493. doi: 10.1364/PRJ.435993 [12] NDAGANO B, DEFIENNE H, LYONS A, et al. Imaging and certifying high-dimensional entanglement with a single-photon avalanche diode camera[J]. npj Quantum Information, 2020, 6(1): 94. doi: 10.1038/s41534-020-00324-8 -