智能反射表面輔助的全雙工通信系統(tǒng)的物理層安全設(shè)計(jì)
doi: 10.11999/JEIT220547
-
1.
河海大學(xué)物聯(lián)網(wǎng)工程學(xué)院 常州 213022
-
2.
江蘇省輸配電裝備技術(shù)重點(diǎn)實(shí)驗(yàn)室 常州 213022
Physical Layer Security For Intelligent Reflecting Surface Assisted Full-duplex Communication
-
1.
College of Internet of Things Engineering, Hohai University, Changzhou 213022, China
-
2.
Jiangsu Key Laboratory of Power Transmission & Distribution Equipment Technology, Changzhou 213022, China
-
摘要: 帶內(nèi)全雙工技術(shù)可以緩解無(wú)線通信系統(tǒng)中頻譜資源緊張的問(wèn)題。為有效保障全雙工通信系統(tǒng)的信息安全,針對(duì)全雙工接入點(diǎn)(FD-AP)與上行用戶、下行用戶同時(shí)同頻通信的系統(tǒng)模型,該文提出一種智能反射表面(IRS)輔助的物理層安全方案??紤]以最大化下行用戶的安全速率為目標(biāo),在滿足AP發(fā)射功率、AP信干噪比(SINR)以及IRS反射相移單位模的約束下,構(gòu)建一個(gè)AP發(fā)射波束賦型和IRS反射相移聯(lián)合優(yōu)化問(wèn)題。針對(duì)該變量耦合的非凸優(yōu)化問(wèn)題,該文采用交替優(yōu)化(AO)算法迭代優(yōu)化AP發(fā)射波束賦型和IRS反射相移,并提出一種基于精確罰函數(shù)法的黎曼流形優(yōu)化算法,將反射相移優(yōu)化子問(wèn)題轉(zhuǎn)換成黎曼流形上的無(wú)約束最小化問(wèn)題進(jìn)行求解。仿真結(jié)果表明,所提方案可以明顯提升全雙工通信系統(tǒng)的安全性能;并且相較于當(dāng)前常用的半正定松弛(SDR)算法,所提算法有更低的計(jì)算復(fù)雜度。
-
關(guān)鍵詞:
- 全雙工通信 /
- 物理層安全 /
- 智能反射表面 /
- 黎曼流形優(yōu)化 /
- 精確罰函數(shù)法
Abstract: In-band full-duplex is an efficient technology to alleviate the shortage of spectrum resources in wireless communication system. To ensure the information security of the full-duplex communication system, where a Full Duplex Access Point (FD-AP) receives information from the uplink users and transmits information to the downlink users simultaneously, an Intelligent Reflecting Surface (IRS) assisted physical layer security scheme is proposed in this paper. A multi-variable coupling non-convex optimization problem is formulated to maximize the secrecy rate of downlink users, subject to constraints of the maximum transmit power, the minimum Signal-to-Interference and Noise Ratio(SINR) required at the AP and unit modulus of IRS phase shift. To solve the multi-variable coupling optimization problem, the Alternating Optimization (AO) algorithm is adopted to optimize the AP transmit beamforming and IRS reflection phase shift iteratively, and a Riemannian manifold optimization based on exact penalty method is proposed to deal with the unit modulus constraint and transform the phase shift optimization sup-problem into an unconstrained minimization problem on Riemannian manifold. Simulation results show that the proposed scheme can significantly improve the security performance of full-duplex communication system. In addition, compared with the positive SemiDefinite Relaxation (SDR) algorithm, the proposed algorithm has much lower computational complexity. -
算法1 基于光滑精確罰函數(shù)的黎曼流形優(yōu)化算法 初始化,給定可行初始點(diǎn)$ {{\boldsymbol{p}}_0} $,設(shè)置迭代次數(shù)$ t = 0 $、收斂精度$ \delta $、初始懲罰因子$ \rho $、懲罰增長(zhǎng)系數(shù)$ c $ (1) While $ g({{\boldsymbol{p}}_t}) > \delta $ (2) 使用懲罰因子$ \rho $將AP信干噪比約束$ {\text{C1}} $并入目標(biāo)函數(shù)中,并根據(jù)式(17)進(jìn)行光滑處理 (3) 構(gòu)建復(fù)環(huán)流形${\rm{CCM}}$,令$ {\boldsymbol{p}}_0^m = {{\boldsymbol{p}}_t} $,設(shè)置迭代次數(shù)$ k = 0 $、收斂精度$ \varepsilon $ (4) 根據(jù)式(21),計(jì)算得到初始搜索方向$ {{\xi }_0} = - {\text{Rgra}}{{\textq7j3ldu95}_{{\boldsymbol{p}}_0^m}}f $ (5) While $ {\left\| {{\text{Rgra}}{{\textq7j3ldu95}_{{\boldsymbol{p}}_k^m}}f} \right\|_2} > \varepsilon $ (6) 使用Armijo非精確搜索得到搜索步長(zhǎng)$ {\mu _k} $,根據(jù)式(23),計(jì)算得到切空間$ {T_{{\boldsymbol{p}}_k^m}}\mathcal{M} $上的更新結(jié)果${\boldsymbol{p} }_{k + 1}^{m'}$ (7) 根據(jù)式(24),收縮映射得到$ {\boldsymbol{p}}_{k + 1}^m $ (8) 根據(jù)式(22),計(jì)算得到新的搜索方向$ {{\xi }_{k + 1}} $ (9) $ k = k + 1 $ (10) End While, $ {{\boldsymbol{p}}_{t + 1}} = {\boldsymbol{p}}_k^m $ (11) $ \rho = c\rho ,{\text{ }}t = t + 1 $ (12) End While, $ {{\boldsymbol{p}}^ * } = {{\boldsymbol{p}}_t} $ (13) 根據(jù)式(25),從$ {{\boldsymbol{p}}^ * } $中恢復(fù)$ {{\boldsymbol{q}}^ * } $ 下載: 導(dǎo)出CSV
-
[1] XU Sai, LIU Jiajia, and CAO Yurui. Intelligent reflecting surface empowered physical-layer security: Signal cancellation or jamming?[J]. IEEE Internet of Things Journal, 2022, 9(2): 1265–1275. doi: 10.1109/JIOT.2021.3079325 [2] 劉志新, 趙松晗, 楊毅, 等. 智能反射面輔助的無(wú)人機(jī)無(wú)線攜能通信網(wǎng)絡(luò)吞吐量最大化算法研究[J]. 電子與信息學(xué)報(bào), 2022, 44(7): 2325–2331. doi: 10.11999/JEIT220195LIU Zhixin, ZHAO Songhan, YANG Yi, et al. Throughput maximization algorithm for intelligent reflecting surface-aided unmanned aerial vehicle communication networks with wireless energy transfer[J]. Journal of Electronics &Information Technology, 2022, 44(7): 2325–2331. doi: 10.11999/JEIT220195 [3] 楊杰, 季新生, 王飛虎, 等. 竊聽者隨機(jī)分布下智能反射面輔助的MISO系統(tǒng)物理層安全性能分析[J]. 電子與信息學(xué)報(bào), 2022, 44(5): 1809–1818. doi: 10.11999/JEIT210209YANG Jie, JI Xinsheng, WANG Feihu, et al. Performance analysis of physical layer security for IRS-aided MISO system with randomly distributed eavesdropping nodes[J]. Journal of Electronics &Information Technology, 2022, 44(5): 1809–1818. doi: 10.11999/JEIT210209 [4] LV Lu, WU Qingqing, LI Zan, et al. Secure two-way communications via intelligent reflecting surfaces[J]. IEEE Communications Letters, 2021, 25(3): 744–748. doi: 10.1109/LCOMM.2020.3035773 [5] WIJEWARDENA M, SAMARASINGHE T, HEMACHANDRA K T, et al. Physical layer security for intelligent reflecting surface assisted two–way communications[J]. IEEE Communications Letters, 2021, 25(7): 2156–2160. doi: 10.1109/LCOMM.2021.3068102 [6] GE Yimeng and FAN Jiancun. Robust secure beamforming for intelligent reflecting surface assisted full-duplex MISO systems[J]. IEEE Transactions on Information Forensics and Security, 2022, 17: 253–264. doi: 10.1109/TIFS.2021.3137754 [7] ANOKYE P, AHIADORMEY R K, JO H S, et al. Low-resolution ADC quantized full-duplex massive MIMO-enabled wireless backhaul in heterogeneous networks over rician channels[J]. IEEE Transactions on Wireless Communications, 2020, 19(8): 5503–5517. doi: 10.1109/TWC.2020.2994034 [8] HU Xiaoling, ZHANG Rui, and ZHONG Caijun. Semi-passive elements assisted channel estimation for intelligent reflecting surface-aided communications[J]. IEEE Transactions on Wireless Communications, 2022, 21(2): 1132–1142. doi: 10.1109/TWC.2021.3102446 [9] ATAPATTU S, FAN Rongfei, DHARMAWANSA P, et al. Reconfigurable intelligent surface assisted two–way communications: Performance analysis and optimization[J]. IEEE Transactions on Communications, 2020, 68(10): 6552–6567. doi: 10.1109/TCOMM.2020.3008402 [10] CUI Miao, ZHANG Guangchi, and ZHANG Rui. Secure wireless communication via intelligent reflecting surface[J]. IEEE Wireless Communications Letters, 2019, 8(5): 1410–1414. doi: 10.1109/LWC.2019.2919685 [11] ABSIL P A, MAHONY R, and SEPULCHRE R. Optimization Algorithms on Matrix Manifolds[M]. Princeton: Princeton University Press, 2008. [12] BAZARAA M S, SHERALI H D, and SHETTY C M. Nonlinear Programming: Theory and Algorithms[M]. New York: John Wiley & Sons, 2013. [13] XU Xinsheng, MENG Zhiqing, SUN Jianwu, et al. A penalty function method based on smoothing lower order penalty function[J]. Journal of Computational and Applied Mathematics, 2011, 235(14): 4047–4058. doi: 10.1016/j.cam.2011.02.031 [14] YU Xianghao, XU Dongfang, and SCHOBER R. MISO wireless communication systems via intelligent reflecting surfaces: (Invited paper)[C]. 2019 IEEE/CIC International Conference on Communications in China, Changchun, China, 2019: 735–740. [15] GUAN Xinrong, WU Qingqing, and ZHANG Rui. Intelligent reflecting surface assisted secrecy communication: Is artificial noise helpful or not?[J]. IEEE Wireless Communications Letters, 2020, 9(6): 778–782. doi: 10.1109/LWC.2020.2969629 [16] ZHU Fangchao, GAO Feifei, YAO Minli, et al. Joint information- and jamming-beamforming for physical layer security with full duplex base station[J]. IEEE Transactions on Signal Processing, 2014, 62(24): 6391–6401. doi: 10.1109/TSP.2014.2364786 -