基于聯(lián)盟的6G無(wú)人機(jī)通信網(wǎng)絡(luò)優(yōu)化概述
doi: 10.11999/JEIT220383
-
1.
陸軍工程大學(xué)通信工程學(xué)院 南京 210014
-
2.
中國(guó)人民解放軍96963部隊(duì) 南京 210000
-
3.
軍事科學(xué)院系統(tǒng)工程研究院 北京 100141
-
4.
軍事科學(xué)院國(guó)防科技創(chuàng)新研究院 北京 100071
Survey on Optimizations in Coalitions-based Unmanned Aerial Vehicle Communication Networks for 6G Networks
-
1.
Institute of Communication Engineering, Army Engineering University, Nanjing 210014, China
-
2.
PLA 96963 Troops, Nanjing 210000, China
-
3.
Institute of Systems Engineering, Academy of Military Sciences, Beijing 100141, China
-
4.
National Innovation Institute of Defense Technology, Academy of Military Sciences, Beijing 100071, China
-
摘要: 隨著6G網(wǎng)絡(luò)和無(wú)人機(jī)(UAV)技術(shù)的迅猛發(fā)展,無(wú)人機(jī)通信網(wǎng)絡(luò)將成為6G空天地一體化網(wǎng)絡(luò)融合的關(guān)鍵組成部分,在戰(zhàn)場(chǎng)偵查、野外救援和物聯(lián)網(wǎng)信息傳輸?shù)让裼煤蛙娪妙I(lǐng)域發(fā)揮重要作用。針對(duì)無(wú)人機(jī)群大規(guī)模、高動(dòng)態(tài)和自組織等特性,以6G網(wǎng)絡(luò)任務(wù)驅(qū)動(dòng)為出發(fā)點(diǎn),該文提出基于聯(lián)盟的6G無(wú)人機(jī)通信網(wǎng)絡(luò)優(yōu)化框架。圍繞聯(lián)盟形成、聯(lián)盟任務(wù)實(shí)施和聯(lián)盟資源管理對(duì)無(wú)人機(jī)聯(lián)盟工作原理展開(kāi)論述。結(jié)合博弈論、機(jī)器學(xué)習(xí)和在線(xiàn)決策,給出了無(wú)人機(jī)通信網(wǎng)絡(luò)資源優(yōu)化方法和仿真示例。最后,對(duì)6G無(wú)人機(jī)通信網(wǎng)絡(luò)的應(yīng)用前景和亟需解決的問(wèn)題進(jìn)行了開(kāi)放性討論。
-
關(guān)鍵詞:
- 6G /
- 無(wú)人機(jī)通信網(wǎng)絡(luò) /
- 聯(lián)盟 /
- 任務(wù)驅(qū)動(dòng) /
- 博弈論
Abstract: With the rapid development of the Sixth Generation (6G) mobile communications and Unmanned Aerial Vehicle (UAV) technology, UAV communication networks become the key part of intelligent space-air-ground integration networks in 6G, which play an important role in battlefield reconnaissance, field rescue, information transmission of Internet of things and other military and civilian fields. Considering the characteristics of UAV networks such as large-scale, high-dynamic and self-organization, mission-driven UAV networks model based on coalitions for 6G is proposed. The model is discussed in three aspects: coalition formations, mission executions, and resource management. Combined with game theory, machine learning and online decisions, the optimization methods and simulation examples of UAV coalition networks are given. Finally, the application prospect of 6G UAV communication networks and the problems to be solved are discussed.-
Key words:
- 6G /
- Unmanned Aerial Vehicle (UAV) communication networks /
- Coalitions /
- Mission-driven /
- Game theory
-
[1] 趙亞軍, 郁光輝, 徐漢青. 6G移動(dòng)通信網(wǎng)絡(luò): 愿景、挑戰(zhàn)與關(guān)鍵技術(shù)[J]. 中國(guó)科學(xué):信息科學(xué), 2019, 49(8): 963–987. doi: 10.1360/N112019-00033ZHAO Yajun, YU Guanghui, and XU Hanqing. 6G mobile communication networks: Vision, challenges, and key technologies[J]. Science in China:Information Sciences, 2019, 49(8): 963–987. doi: 10.1360/N112019-00033 [2] 張平, 牛凱, 田輝, 等. 6G移動(dòng)通信技術(shù)展望[J]. 通信學(xué)報(bào), 2019, 40(1): 141–148. doi: 10.11959/j.issn.1000-436x.2019022ZHANG Ping, NIU Kai, TIAN Hui, et al. Technology prospect of 6G mobile communications[J]. Journal on Communications, 2019, 40(1): 141–148. doi: 10.11959/j.issn.1000-436x.2019022 [3] 賽迪智庫(kù)無(wú)線(xiàn)管理研究所. 6G概念及愿景白皮書(shū)[N]. 中國(guó)計(jì)算機(jī)報(bào), 2020-05-11(08). [4] 江坤全, 張素杰, 張海君, 等. 無(wú)人機(jī)輔助的6G智能網(wǎng)絡(luò)[J]. 人工智能, 2021(4): 118–126. doi: 10.16453/j.cnki.ISSN2096-5036.2021.04.011JIANG Kunquan, ZHANG Sujie, ZHANG Haijun, et al. UAV-assisted 6G intelligent networks[J]. Artificial Intelligence, 2021(4): 118–126. doi: 10.16453/j.cnki.ISSN2096-5036.2021.04.011 [5] ZHANG Shuhang, ZHANG Hongliang, and SONG Lingyang. Beyond D2D: Full dimension UAV-to-everything communications in 6G[J]. IEEE Transactions on Vehicular Technology, 2020, 69(6): 6592–6602. doi: 10.1109/TVT.2020.2984624 [6] ZENG Yong, ZHANG Rui, and LIM T J. Wireless communications with unmanned aerial vehicles: Opportunities and challenges[J]. IEEE Communications Magazine, 2016, 54(5): 36–42. doi: 10.1109/MCOM.2016.7470933 [7] MOZAFFARI M, SAAD W, BENNIS M, et al. A tutorial on UAVs for wireless networks: Applications, challenges, and open problems[J]. IEEE Communications Surveys & Tutorials, 2019, 21(3): 2334–2360. doi: 10.1109/COMST.2019.2902862 [8] 陳新穎, 盛敏, 李博, 等. 面向6G的無(wú)人機(jī)通信綜述[J]. 電子與信息學(xué)報(bào), 2022, 44(3): 781–789. doi: 10.11999/JEIT210789CHEN Xinying, SHENG Min, LI Bo, et al. Survey on unmanned aerial vehicle communications for 6G[J]. Journal of Electronics &Information Technology, 2022, 44(3): 781–789. doi: 10.11999/JEIT210789 [9] ZHAO Nan, LU Weidang, SHENG Min, et al. UAV-assisted emergency networks in disasters[J]. IEEE Wireless Communications, 2019, 26(1): 45–51. doi: 10.1109/MWC.2018.1800160 [10] BEKMEZCI ?, SAHINGOZ O K, and TEMEL ?. Flying Ad-Hoc networks (FANETs): A survey[J]. Ad Hoc Networks, 2013, 11(3): 1254–1270. doi: 10.1016/j.adhoc.2012.12.004 [11] CHEN Mingzhe, CHALLITA U, SAAD W, et al. Artificial neural networks-based machine learning for wireless networks: A tutorial[J]. IEEE Communications Surveys & Tutorials, 2019, 21(4): 3039–3071. doi: 10.1109/COMST.2019.2926625 [12] WANG Ximing, XU Yuhua, CHEN Chaohui, et al. Machine learning empowered spectrum sharing in intelligent unmanned swarm communication systems: Challenges, requirements and solutions[J]. IEEE Access, 2020, 8: 89839–89849. doi: 10.1109/ACCESS.2020.2994198 [13] 游文靜, 董超, 吳啟暉. 大規(guī)模無(wú)人機(jī)自組網(wǎng)分層體系架構(gòu)研究綜述[J]. 計(jì)算機(jī)科學(xué), 2020, 47(9): 226–231. doi: 10.11896/jsjkx.190900164YOU Wenjing, DONG Chao, and WU Qihui. Survey of layered architecture in large-scale FANETs[J]. Computer Science, 2020, 47(9): 226–231. doi: 10.11896/jsjkx.190900164 [14] 張?zhí)炜? 陳超, 王子端, 等. 無(wú)人機(jī)輔助蜂窩網(wǎng)絡(luò)中的無(wú)人機(jī)與用戶(hù)協(xié)同緩存算法[J]. 通信學(xué)報(bào), 2020, 41(9): 130–138. doi: 10.11959/j.issn.1000-436x.2020029ZHANG Tiankui, CHEN Chao, WANG Ziduan, et al. Cooperative caching algorithm of UAV and user in UAV-assisted cellular network[J]. Journal on Communications, 2020, 41(9): 130–138. doi: 10.11959/j.issn.1000-436x.2020029 [15] MKIRAMWENI M E, YANG Chungang, LI Jiandong, et al. Game-theoretic approaches for wireless communications with unmanned aerial vehicles[J]. IEEE Wireless Communications, 2018, 25(6): 104–112. doi: 10.1109/MWC.2017.1700250 [16] LI Chunguo, ZHANG Shengli, LIU Peng, et al. Yang. Overhearing protocol design exploiting intercell interference in cooperative green networks[J]. IEEE Transactions on Vehicular Technology, 2016, 65(1): 441–446. doi: 10.1109/TVT.2015.2389826 [17] WANG Ximing, WANG Jinlong, XU Yuhua, et al. Dynamic spectrum anti-jamming communications: Challenges and opportunities[J]. IEEE Communications Magazine, 2020, 58(2): 79–85. doi: 10.1109/MCOM.001.1900530 [18] 王云哲, 徐國(guó)寧, 王生, 等. 蜂群無(wú)人機(jī)充電排隊(duì)優(yōu)化方法[J]. 航空學(xué)報(bào), 2020, 41(10): 323928. doi: 10.7527/S1000-6893.2020.23928WANG Yunzhe, XU Guoning, WANG Sheng, et al. Optimization of charging queuing of UAV swarming[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 323928. doi: 10.7527/S1000-6893.2020.23928 [19] ZHANG Qixun, JIANG Menglei, FENG Zhiyong, et al. IoT enabled UAV: Network architecture and routing algorithm[J]. IEEE Internet of Things Journal, 2019, 6(2): 3727–3742. doi: 10.1109/JIOT.2018.2890428 [20] ZHOU Fuhui, WU Yongpeng, HU R Q, et al. Computation rate maximization in UAV-enabled wireless-powered mobile-edge computing systems[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(9): 1927–1941. doi: 10.1109/JSAC.2018.2864426 [21] HU Qiyu, CAI Yunlong, YU Guanding, et al. Joint offloading and trajectory design for UAV-enabled mobile edge computing systems[J]. IEEE Internet of Things Journal, 2019, 6(2): 1879–1892. doi: 10.1109/JIOT.2018.2878876 [22] ZHANG Chiya and ZHANG Wei. Spectrum sharing for drone networks[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(1): 136–144. doi: 10.1109/JSAC.2016.2633040 [23] KHUWAJA A A, CHEN Yunfei, ZHAO Nan, et al. Dobbins. A survey of channel modeling for UAV communications[J]. IEEE Communications Surveys & Tutorials, 2018, 20(4): 2804–2821. doi: 10.1109/COMST.2018.2856587 [24] LIU Dianxiong, XU Yuhua, WANG Jinlong, et al. Opportunistic UAV utilization in wireless networks: Motivations, applications, and challenges[J]. IEEE Communications Magazine, 2020, 58(5): 62–68. doi: 10.1109/MCOM.001.1900687 [25] ZHANG Yuli, XU Yuhua, WU Qihui, et al. Context awareness group buying in D2D networks: A coalition formation game-theoretic approach[J]. IEEE Transactions on Vehicular Technology, 2018, 67(12): 12259–12272. doi: 10.1109/TVT.2018.2875463 [26] XU Yuhua, WANG Jinlong, WU Qihui, et al. Opportunistic spectrum access in cognitive radio networks: Global optimization using local interaction games[J]. IEEE Journal of Selected Topics in Signal Processing, 2012, 6(2): 180–194. doi: 10.1109/JSTSP.2011.2176916 [27] AREL I, ROSE D C, and KARNOWSKI T P. Deep machine learning - a new frontier in artificial intelligence research [Research Frontier][J]. IEEE Computational Intelligence Magazine, 2010, 5(4): 13–18. doi: 10.1109/MCI.2010.938364 [28] PAN S J and YANG Qiang. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345–1359. doi: 10.1109/TKDE.2009.191 [29] RUAN Lang, CHEN Jin, GUO Qiuju, et al. A coalition formation game approach for efficient cooperative multi-UAV deployment[J]. Applied Sciences, 2018, 8(12): 2427. doi: 10.3390/app8122427 [30] CHEN Runfeng, CUI Li, WANG Meng, et al. Joint computation offloading, channel access and scheduling optimization in UAV swarms: A game-theoretic learning approach[J]. IEEE Open Journal of the Computer Society, 2021, 2: 308–320. doi: 10.1109/OJCS.2021.3100870 [31] 沈?qū)W民, 承楠, 周海波, 等. 空天地一體化網(wǎng)絡(luò)技術(shù): 探索與展望[J]. 物聯(lián)網(wǎng)學(xué)報(bào), 2020, 4(3): 3–19. doi: 10.11959/j.issn.2096-3750.2020.00142SHEN Xuemin, CHENG Nan, ZHOU Haibo, et al. Space-air-ground integrated networks: Review and prospect[J]. Chinese Journal on Internet of Things, 2020, 4(3): 3–19. doi: 10.11959/j.issn.2096-3750.2020.00142 -