一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

智能反射面輔助的無(wú)人機(jī)無(wú)線攜能通信網(wǎng)絡(luò)吞吐量最大化算法研究

劉志新 趙松晗 楊毅 袁亞洲

劉志新, 趙松晗, 楊毅, 袁亞洲. 智能反射面輔助的無(wú)人機(jī)無(wú)線攜能通信網(wǎng)絡(luò)吞吐量最大化算法研究[J]. 電子與信息學(xué)報(bào), 2022, 44(7): 2325-2331. doi: 10.11999/JEIT220195
引用本文: 劉志新, 趙松晗, 楊毅, 袁亞洲. 智能反射面輔助的無(wú)人機(jī)無(wú)線攜能通信網(wǎng)絡(luò)吞吐量最大化算法研究[J]. 電子與信息學(xué)報(bào), 2022, 44(7): 2325-2331. doi: 10.11999/JEIT220195
LIU Zhixin, ZHAO Songhan, YANG Yi, YUAN Yazhou. Throughput Maximization Algorithm for Intelligent Reflecting Surface-aided Unmanned Aerial Vehicle Communication Networks with Wireless Energy Transfer[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2325-2331. doi: 10.11999/JEIT220195
Citation: LIU Zhixin, ZHAO Songhan, YANG Yi, YUAN Yazhou. Throughput Maximization Algorithm for Intelligent Reflecting Surface-aided Unmanned Aerial Vehicle Communication Networks with Wireless Energy Transfer[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2325-2331. doi: 10.11999/JEIT220195

智能反射面輔助的無(wú)人機(jī)無(wú)線攜能通信網(wǎng)絡(luò)吞吐量最大化算法研究

doi: 10.11999/JEIT220195
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(61873223)
詳細(xì)信息
    作者簡(jiǎn)介:

    劉志新:男,1976年生,教授,研究方向?yàn)闊o(wú)線通信網(wǎng)絡(luò)資源優(yōu)化分配與協(xié)同控制

    趙松晗:男,1996年生,博士生,研究方向?yàn)橹悄芊瓷涿嫱ㄐ畔到y(tǒng)

    楊毅:女,1983年生,助理研究員,研究方向?yàn)闊o(wú)線資源優(yōu)化管理

    袁亞洲:男,1985年生,副教授,研究方向?yàn)槲锫?lián)網(wǎng)技術(shù)與應(yīng)用

    通訊作者:

    劉志新 lzxauto@ysu.edu.cn

  • 中圖分類號(hào): TN92

Throughput Maximization Algorithm for Intelligent Reflecting Surface-aided Unmanned Aerial Vehicle Communication Networks with Wireless Energy Transfer

Funds: The National Natural Science Foundation of China (61873223)
  • 摘要: 為了解決城市場(chǎng)景中無(wú)人機(jī)(UAV)與地面終端設(shè)備(GUs)間易受到障礙物阻擋的問(wèn)題,該文提出一種基于智能反射面(IRS)輔助的UAV供能通信網(wǎng)絡(luò)吞吐量最大化算法。首先,在滿足能量因果、IRS相移、UAV移動(dòng)性等約束條件下,建立了一個(gè)聯(lián)合IRS相移設(shè)計(jì)、GU無(wú)線資源分配、UAV飛行軌跡設(shè)計(jì)的多變量耦合優(yōu)化模型。其次,通過(guò)快坐標(biāo)下降法(BCD)將原非凸問(wèn)題轉(zhuǎn)換為3個(gè)易于處理的子問(wèn)題,并通過(guò)三角不等式、引入松弛變量、連續(xù)凸近似(SCA)等方法,對(duì)子問(wèn)題進(jìn)行轉(zhuǎn)化求解。仿真結(jié)果表明,該文所提算法具有較好的收斂性,同時(shí)可有效提高系統(tǒng)總吞吐量。
  • 圖  1  IRS輔助的UAV供能通信網(wǎng)絡(luò)

    圖  2  時(shí)隙分配

    圖  3  不同參數(shù)下UAV軌跡

    圖  4  算法收斂性驗(yàn)證

    圖  5  SCA逼近程度驗(yàn)證圖

    圖  6  總吞吐量與IRS元件數(shù)量的關(guān)系

    表  1  基于BCD的資源分配算法

     初始化系統(tǒng)參數(shù):$ {{\boldsymbol{\varTheta }}^{(0)}} $, $ {{\boldsymbol{P}}^{(0)}} $, $ {\boldsymbol{t}}_{\text{E}}^{(0)} $, $ {\boldsymbol{t}}_m^{(0)} $, $ {{\boldsymbol{q}}^{(0)}} $, $ {\psi ^{(0)}} $;設(shè)置最大迭代次數(shù)$ {L_{{\text{max}}}} $;設(shè)置收斂精度$ \varepsilon \gt 0 $;迭代次數(shù)$ l = 0 $;
     (1) Repeat
     (2) 設(shè)置迭代次數(shù)$ l = l + 1 $;
     (3) 根據(jù)給定的$ {{\boldsymbol{P}}^{(l - 1)}} $, $ {\boldsymbol{t}}_{\text{E}}^{(l - 1)} $, $ {\boldsymbol{t}}_m^{(l - 1)} $, $ {{\boldsymbol{q}}^{(l - 1)}} $,通過(guò)式(11)更新$ {{\boldsymbol{\varTheta }}^{(l)}} $;
     (4) 根據(jù)給定的$ {{\boldsymbol{\varTheta }}^{(l)}} $和$ {{\boldsymbol{q}}^{(l - 1)}} $,通過(guò)求解問(wèn)題式(13)得到$ {{\boldsymbol{P}}^{(l)}} $, $ {\boldsymbol{t}}_{\text{E}}^{(l)} $和$ {\boldsymbol{t}}_m^{(l)} $;
     (5) 根據(jù)給定的$ {{\boldsymbol{P}}^{(l)}} $, $ {\boldsymbol{t}}_{\text{E}}^{(l)} $, $ {\boldsymbol{t}}_m^{(l)} $和$ {{\boldsymbol{\varTheta }}^{(l)}} $,通過(guò)求解問(wèn)題式(20)得到$ {{\boldsymbol{q}}^{(l)}} $;
     (6) Until $ |{\psi ^{(l)}} - {\psi ^{(l - 1)}}| \le \varepsilon $或者$ l \ge {L_{{\text{max}}}} $;
     (7) 結(jié)束并輸出結(jié)果。
    下載: 導(dǎo)出CSV
  • [1] LUO Weiran, SHEN Yanyan, YANG Bo, et al. Joint 3-D trajectory and resource optimization in multi-UAV-enabled IoT networks with wireless power transfer[J]. IEEE Internet of Things Journal, 2021, 8(10): 7833–7848. doi: 10.1109/JIOT.2020.3041303
    [2] YANG Zhaohui, XU Wei, and SHIKH-BAHAEI M. Energy efficient UAV communication with energy harvesting[J]. IEEE Transactions on Vehicular Technology, 2020, 69(2): 1913–1927. doi: 10.1109/TVT.2019.2961993
    [3] 徐勇軍, 高正念, 王茜竹, 等. 基于智能反射面輔助的無(wú)線供電通信網(wǎng)絡(luò)魯棒能效最大化算法[J]. 電子與信息學(xué)報(bào), 待發(fā)表.

    XU Yongjun, GAO Zhengnian, WANG Qianzhu, et al. Robust energy efficiency maximization algorithm for intelligent reflecting surface-aided wireless powered-communication networks[J]. Journal of Electronics & Information Technology, To be published.
    [4] WU Qingqing and ZHANG Rui. Beamforming optimization for wireless network aided by intelligent reflecting surface with discrete phase shifts[J]. IEEE Transactions on Communications, 2020, 68(3): 1838–1851. doi: 10.1109/TCOMM.2019.2958916
    [5] FANG Sisai, CHEN Gaojie, and LI Yonghui. Joint optimization for secure intelligent reflecting surface assisted UAV networks[J]. IEEE Wireless Communications Letters, 2021, 10(2): 276–280. doi: 10.1109/LWC.2020.3027969
    [6] MEI Haibo, YANG Kun, SHEN Jun, et al. Joint trajectory-task-cache optimization with phase-shift design of RIS-assisted UAV for MEC[J]. IEEE Wireless Communications Letters, 2021, 10(7): 1586–1590. doi: 10.1109/LWC.2021.3074990
    [7] ZOU Yuze, GONG Shimin, XU Jing, et al. Wireless powered intelligent reflecting surfaces for enhancing wireless communications[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 12369–12373. doi: 10.1109/TVT.2020.3011942
    [8] LI Jingyi, XU Sai, LIU Jiajia, et al. Reconfigurable intelligent surface enhanced secure aerial-ground communication[J]. IEEE Transactions on Communications, 2021, 69(9): 6185–6197. doi: 10.1109/TCOMM.2021.3086517
    [9] RANJHA A and KADDOUM G. URLLC facilitated by mobile UAV relay and RIS: A joint design of passive beamforming, blocklength, and UAV positioning[J]. IEEE Internet of Things Journal, 2021, 8(6): 4618–4627. doi: 10.1109/JIOT.2020.3027149
    [10] CAO Xuelin, YANG Bo, HUANG Chongwen, et al. Reconfigurable intelligent surface-assisted aerial-terrestrial communications via multi-task learning[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(10): 3035–3050. doi: 10.1109/JSAC.2021.3088634
    [11] XIE Lifeng, XU Jie, and ZHANG Rui. Throughput maximization for UAV-enabled wireless powered communication networks[J]. IEEE Internet of Things Journal, 2019, 6(2): 1690–1703. doi: 10.1109/JIOT.2018.2875446
    [12] WU Qingqing and ZHANG Rui. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[J]. IEEE Transactions on Wireless Communications, 2019, 18(11): 5394–5409. doi: 10.1109/TWC.2019.2936025
    [13] BOYD S and VANDENBERGHE L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004.
    [14] YOU Changsheng and ZHANG Rui. Hybrid offline-online design for UAV-enabled data harvesting in probabilistic LoS channels[J]. IEEE Transactions on Wireless Communications, 2020, 19(6): 3753–3768. doi: 10.1109/TWC.2020.2978073
    [15] YANG Gang, DAI Rao, and LIANG Yingchang. Energy-efficient UAV backscatter communication with joint trajectory design and resource optimization[J]. IEEE Transactions on Wireless Communications, 2021, 20(2): 926–941. doi: 10.1109/TWC.2020.3029225
  • 加載中
圖(6) / 表(1)
計(jì)量
  • 文章訪問(wèn)數(shù):  1449
  • HTML全文瀏覽量:  960
  • PDF下載量:  295
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2022-02-28
  • 修回日期:  2022-04-05
  • 網(wǎng)絡(luò)出版日期:  2022-04-15
  • 刊出日期:  2022-07-25

目錄

    /

    返回文章
    返回