智能反射面輔助的無(wú)人機(jī)無(wú)線攜能通信網(wǎng)絡(luò)吞吐量最大化算法研究
doi: 10.11999/JEIT220195
-
燕山大學(xué)電氣工程學(xué)院 秦皇島 066004
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(61873223)
Throughput Maximization Algorithm for Intelligent Reflecting Surface-aided Unmanned Aerial Vehicle Communication Networks with Wireless Energy Transfer
-
School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
Funds: The National Natural Science Foundation of China (61873223)
-
摘要: 為了解決城市場(chǎng)景中無(wú)人機(jī)(UAV)與地面終端設(shè)備(GUs)間易受到障礙物阻擋的問(wèn)題,該文提出一種基于智能反射面(IRS)輔助的UAV供能通信網(wǎng)絡(luò)吞吐量最大化算法。首先,在滿足能量因果、IRS相移、UAV移動(dòng)性等約束條件下,建立了一個(gè)聯(lián)合IRS相移設(shè)計(jì)、GU無(wú)線資源分配、UAV飛行軌跡設(shè)計(jì)的多變量耦合優(yōu)化模型。其次,通過(guò)快坐標(biāo)下降法(BCD)將原非凸問(wèn)題轉(zhuǎn)換為3個(gè)易于處理的子問(wèn)題,并通過(guò)三角不等式、引入松弛變量、連續(xù)凸近似(SCA)等方法,對(duì)子問(wèn)題進(jìn)行轉(zhuǎn)化求解。仿真結(jié)果表明,該文所提算法具有較好的收斂性,同時(shí)可有效提高系統(tǒng)總吞吐量。
-
關(guān)鍵詞:
- 無(wú)人機(jī)通信網(wǎng)絡(luò) /
- 智能反射面 /
- 無(wú)線資源分配
Abstract: In order to mitigate the adverse effect of blockages between the Unmanned Aerial Vehicle (UAV) and Ground Users (GUs), a throughput maximization algorithm for an Intelligent Reflecting Surface (IRS)-aided UAV communication network is proposed. First, considering the constraints of the energy causality, the IRS phase-shift, the UAV mobility, etc, a multi-variable coupling optimization problem is proposed with jointly optimizing the phase-shift of the IRS, the resource allocation of GUs, and the UAV trajectory. Second, the original non-convex problem is decomposed into three simpler sub-problems via the Block Coordinate Descent (BCD), which are tackled by the triangle inequality, introducing the slack variables and Successive Convex Approximation (SCA). Numerical results show that the proposed algorithm has a desirable convergence, as well as improves effectively the system sum-throughput. -
表 1 基于BCD的資源分配算法
初始化系統(tǒng)參數(shù):$ {{\boldsymbol{\varTheta }}^{(0)}} $, $ {{\boldsymbol{P}}^{(0)}} $, $ {\boldsymbol{t}}_{\text{E}}^{(0)} $, $ {\boldsymbol{t}}_m^{(0)} $, $ {{\boldsymbol{q}}^{(0)}} $, $ {\psi ^{(0)}} $;設(shè)置最大迭代次數(shù)$ {L_{{\text{max}}}} $;設(shè)置收斂精度$ \varepsilon \gt 0 $;迭代次數(shù)$ l = 0 $; (1) Repeat (2) 設(shè)置迭代次數(shù)$ l = l + 1 $; (3) 根據(jù)給定的$ {{\boldsymbol{P}}^{(l - 1)}} $, $ {\boldsymbol{t}}_{\text{E}}^{(l - 1)} $, $ {\boldsymbol{t}}_m^{(l - 1)} $, $ {{\boldsymbol{q}}^{(l - 1)}} $,通過(guò)式(11)更新$ {{\boldsymbol{\varTheta }}^{(l)}} $; (4) 根據(jù)給定的$ {{\boldsymbol{\varTheta }}^{(l)}} $和$ {{\boldsymbol{q}}^{(l - 1)}} $,通過(guò)求解問(wèn)題式(13)得到$ {{\boldsymbol{P}}^{(l)}} $, $ {\boldsymbol{t}}_{\text{E}}^{(l)} $和$ {\boldsymbol{t}}_m^{(l)} $; (5) 根據(jù)給定的$ {{\boldsymbol{P}}^{(l)}} $, $ {\boldsymbol{t}}_{\text{E}}^{(l)} $, $ {\boldsymbol{t}}_m^{(l)} $和$ {{\boldsymbol{\varTheta }}^{(l)}} $,通過(guò)求解問(wèn)題式(20)得到$ {{\boldsymbol{q}}^{(l)}} $; (6) Until $ |{\psi ^{(l)}} - {\psi ^{(l - 1)}}| \le \varepsilon $或者$ l \ge {L_{{\text{max}}}} $; (7) 結(jié)束并輸出結(jié)果。 下載: 導(dǎo)出CSV
-
[1] LUO Weiran, SHEN Yanyan, YANG Bo, et al. Joint 3-D trajectory and resource optimization in multi-UAV-enabled IoT networks with wireless power transfer[J]. IEEE Internet of Things Journal, 2021, 8(10): 7833–7848. doi: 10.1109/JIOT.2020.3041303 [2] YANG Zhaohui, XU Wei, and SHIKH-BAHAEI M. Energy efficient UAV communication with energy harvesting[J]. IEEE Transactions on Vehicular Technology, 2020, 69(2): 1913–1927. doi: 10.1109/TVT.2019.2961993 [3] 徐勇軍, 高正念, 王茜竹, 等. 基于智能反射面輔助的無(wú)線供電通信網(wǎng)絡(luò)魯棒能效最大化算法[J]. 電子與信息學(xué)報(bào), 待發(fā)表.XU Yongjun, GAO Zhengnian, WANG Qianzhu, et al. Robust energy efficiency maximization algorithm for intelligent reflecting surface-aided wireless powered-communication networks[J]. Journal of Electronics & Information Technology, To be published. [4] WU Qingqing and ZHANG Rui. Beamforming optimization for wireless network aided by intelligent reflecting surface with discrete phase shifts[J]. IEEE Transactions on Communications, 2020, 68(3): 1838–1851. doi: 10.1109/TCOMM.2019.2958916 [5] FANG Sisai, CHEN Gaojie, and LI Yonghui. Joint optimization for secure intelligent reflecting surface assisted UAV networks[J]. IEEE Wireless Communications Letters, 2021, 10(2): 276–280. doi: 10.1109/LWC.2020.3027969 [6] MEI Haibo, YANG Kun, SHEN Jun, et al. Joint trajectory-task-cache optimization with phase-shift design of RIS-assisted UAV for MEC[J]. IEEE Wireless Communications Letters, 2021, 10(7): 1586–1590. doi: 10.1109/LWC.2021.3074990 [7] ZOU Yuze, GONG Shimin, XU Jing, et al. Wireless powered intelligent reflecting surfaces for enhancing wireless communications[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 12369–12373. doi: 10.1109/TVT.2020.3011942 [8] LI Jingyi, XU Sai, LIU Jiajia, et al. Reconfigurable intelligent surface enhanced secure aerial-ground communication[J]. IEEE Transactions on Communications, 2021, 69(9): 6185–6197. doi: 10.1109/TCOMM.2021.3086517 [9] RANJHA A and KADDOUM G. URLLC facilitated by mobile UAV relay and RIS: A joint design of passive beamforming, blocklength, and UAV positioning[J]. IEEE Internet of Things Journal, 2021, 8(6): 4618–4627. doi: 10.1109/JIOT.2020.3027149 [10] CAO Xuelin, YANG Bo, HUANG Chongwen, et al. Reconfigurable intelligent surface-assisted aerial-terrestrial communications via multi-task learning[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(10): 3035–3050. doi: 10.1109/JSAC.2021.3088634 [11] XIE Lifeng, XU Jie, and ZHANG Rui. Throughput maximization for UAV-enabled wireless powered communication networks[J]. IEEE Internet of Things Journal, 2019, 6(2): 1690–1703. doi: 10.1109/JIOT.2018.2875446 [12] WU Qingqing and ZHANG Rui. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[J]. IEEE Transactions on Wireless Communications, 2019, 18(11): 5394–5409. doi: 10.1109/TWC.2019.2936025 [13] BOYD S and VANDENBERGHE L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004. [14] YOU Changsheng and ZHANG Rui. Hybrid offline-online design for UAV-enabled data harvesting in probabilistic LoS channels[J]. IEEE Transactions on Wireless Communications, 2020, 19(6): 3753–3768. doi: 10.1109/TWC.2020.2978073 [15] YANG Gang, DAI Rao, and LIANG Yingchang. Energy-efficient UAV backscatter communication with joint trajectory design and resource optimization[J]. IEEE Transactions on Wireless Communications, 2021, 20(2): 926–941. doi: 10.1109/TWC.2020.3029225 -