面向可見(jiàn)光通信的硅基InGaN/GaN多量子阱多口分路器光子集成芯片
doi: 10.11999/JEIT210953
-
1.
南京郵電大學(xué)通信與信息工程學(xué)院 南京 210003
-
2.
南京郵電大學(xué)寬帶無(wú)線通信與傳感網(wǎng)技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室 南京 210003
Silicon-based InGaN/GaN Multi-quantum Wells Multi-port Splitter Photonic Integrated Chip for Visible Light Communication
-
1.
College of Telecommunications and Information, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
-
2.
Key Laboratory of Broadband Wireless Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Ministry of Education, Nanjing 210003, China
-
摘要: 為研究面向可見(jiàn)光通信的多功能光子集成芯片,實(shí)現(xiàn)可見(jiàn)光信號(hào)發(fā)射、探測(cè)、傳輸和功率分配的一體化的復(fù)合功能,該文提出一種基于硅基InGaN/GaN多量子阱材料的微型發(fā)光二極管(LED)多口分路器結(jié)構(gòu)的光子集成芯片,對(duì)集成芯片進(jìn)行了形貌、光電特性和可見(jiàn)光通信測(cè)試等多方面表征,實(shí)現(xiàn)了對(duì)可見(jiàn)光信號(hào)的有效傳輸和不同比例的多口功率分路,并對(duì)分路器不同端口的出射光強(qiáng)進(jìn)行量化處理,最后,利用信號(hào)發(fā)生器在微型LED光源發(fā)射端加載300 kHz的矩形波電信號(hào),收集分路器末端發(fā)射的調(diào)制可見(jiàn)光信號(hào),輸入/接收信號(hào)的波形變化趨勢(shì)一致,說(shuō)明該光子集成芯片可實(shí)現(xiàn)有效的可見(jiàn)光通信。該研究的主要目的是嘗試性將可見(jiàn)光波段的光源和光電探測(cè)器集成在氮化物晶圓上,為可見(jiàn)光通信的全光網(wǎng)絡(luò)的可見(jiàn)光信號(hào)片上集成式處理提供新的研究思路和方案,為發(fā)展面向可見(jiàn)光通信網(wǎng)絡(luò)需求的復(fù)合功能光子集成芯片終端提供了更多可能性。
-
關(guān)鍵詞:
- 光子集成芯片 /
- 可見(jiàn)光通信 /
- 氮化鎵 /
- 發(fā)光二極管 /
- 多口分路器
Abstract: In order to study the multi-functional photon integrated chip for visible light communication and realize the integrated function of visible light signal emission, detection, transmission and power distribution, a miniature Light Emitting Diode(LED) with splitter structure based on silicon-based InGaN/GaN multiple quantum well material is proposed in this paper. The photon integrated chip is characterized in many aspects, such as morphology, optoelectronic characteristics and visible light communication test. The effective transmission of visible light signal and different proportion of multi-port power shunt are realized, and the output light intensity of different ports of the splitter is quantified. Finally, the rectangular wave signal of 300 kHz is loaded at the emitter end of the miniature LED light source by the signal generator, and the modulated visible light signal emitted at the end of the splitter is collected. The waveform change trend of the input / receive signal is the same. It shows that the photonic integrated chip can achieve effective visible light communication. The main purpose of this study is to try to integrate visible light sources and photodetectors on nitride wafers, so as to provide new research ideas and schemes for on-chip integrated processing of visible light signals in all-optical networks of visible light communications. It provides more possibilities for the development of multi-function photon integrated chip terminals for visible light communication networks. -
表 2 分路器不同端口的出射光強(qiáng)
電流(mA) 3 4 5 6 7 8 9 10 1號(hào)端口光強(qiáng)(a.u.) 1854.1 4065.9 4580.9 6455.0 9363.0 12213.1 13929.8 14582.0 2號(hào)端口光強(qiáng)(a.u.) 330.1 922.0 797.9 1102.0 1964.0 2873.0 3021.0 3383.0 3號(hào)端口光強(qiáng)(a.u.) 147.1 481.0 215.1 795.9 1944.0 1684.0 2025.0 1776.0 下載: 導(dǎo)出CSV
-
[1] KUMARI M, SHEETAL A, and SHARMA R. Performance analysis of a full-duplex TWDM-PON using OFDM modulation with red LED visible light communication System[J]. Wireless Personal Communications, 2021, 119(3): 2539–2559. doi: 10.1007/s11277-021-08343-0 [2] KHALID A, RASHID F, TAHIR U, et al. Multi-carrier visible light communication system using enhanced sub-carrier index modulation and discrete wavelet transform[J/OL]. Wireless Personal Communications, 2021. [3] DAWOOD M A, SALEH S S, EL-BADAWY E S A, et al. A comparative analysis of localization algorithms for visible light communication[J]. Optical and Quantum Electronics, 2021, 53(2): 108. doi: 10.1007/s11082-021-02751-z [4] BEHRMAN K, FOUILIOUX J, IRELAND T, et al. 37-4: Micro LED defect analysis via photoluminescent and cathodoluminescent imaging[C]. SID Symposium Digest of Technical Papers, New York, USA, 2020: 532–535. [5] XIA Jiye, DONG Xiaobiao, YAO Zhibo, et al. Development of high-yield laser lift-off process for micro LED display[C]. SID Symposium Digest of Technical Papers, New York, USA, 2020: 55–57. [6] 王家先. 基于InP/ZnS量子點(diǎn)的全彩色Micro-LED陳列顯示器件設(shè)計(jì)及制作研究[D]. [碩士論文], 中國(guó)科學(xué)院大學(xué)(中國(guó)科學(xué)院長(zhǎng)春光學(xué)精密機(jī)械與物理研究所), 2020.WANG Jiaxian. Design and fabrication of full-color micro-LED array device based on InP/ZnS quantum dots material[D]. [Master dissertation], Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2020. [7] ZHANG Shuailong, GONG Zheng, MCKENDRY J J D, et al. CMOS-controlled color-tunable smart display[J]. IEEE Photonics Journal, 2012, 4(5): 1639–1646. doi: 10.1109/JPHOT.2012.2212181 [8] TIAN Pengfei, MCKENDRY J J D, GONG Zheng, et al. Characteristics and applications of micro-pixelated GaN-based light emitting diodes on Si substrates[J]. Journal of Applied Physics, 2014, 115(3): 033112. doi: 10.1063/1.4862298 [9] ISLIM M S, FERREIRA R X, HE Xiangyu, et al. Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED[J]. Photonics Research, 2017, 5(2): A35–A43. doi: 10.1364/PRJ.5.000A35 [10] PARK S I, BRENNER D S, SHIN G, et al. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics[J]. Nature Biotechnology, 2015, 33(12): 1280–1286. doi: 10.1038/nbt.3415 [11] GUILHABERT B, MASSOUBRE D, RICHARDSON E, et al. Sub-Micron lithography using InGaN micro-LEDs: Mask-free fabrication of LED arrays[J]. IEEE Photonics Technology Letters, 2012, 24(24): 2221–2224. doi: 10.1109/LPT.2012.2225612 [12] 梁棟, 譚慶貴, 蔣煒, 等. 面向下一代載荷系統(tǒng)應(yīng)用的光子集成芯片探索[J]. 空間電子技術(shù), 2020, 17(4): 126–131. doi: 10.3969/j.issn.1674-7135.2020.04.017LIANG Dong, TAN Qinggui, JIANG Wei, et al. Research on photonics integrated chips for future satellite payloads[J]. Space Electronic Technology, 2020, 17(4): 126–131. doi: 10.3969/j.issn.1674-7135.2020.04.017 [13] ALQULIAH A, ELKABBASH M, ZHANG Jihua, et al. Ultrabroadband, compact, polarization independent and efficient metasurface-based power splitter on lithium niobate waveguides[J]. Optics Express, 2021, 29(6): 8160–8170. doi: 10.1364/OE.415676 [14] YU Zejie, XI Xiang, MA Jingwen, et al. Photonic integrated circuits with bound states in the continuum[J]. Optica, 2019, 6(10): 1342–1348. doi: 10.1364/OPTICA.6.001342 [15] ZHANG Yan, DU Qingyang, WANG Chuangtang, et al. Monolithic integration of broadband optical isolators for polarization-diverse silicon photonics[J]. Optica, 2019, 6(4): 473–478. doi: 10.1364/OPTICA.6.000473 [16] 楊斌, 尹小杰, 李紹洋, 等. 二氧化硅平面光波導(dǎo)器件的研究進(jìn)展[J]. 半導(dǎo)體光電, 2021, 42(2): 151–157,167. doi: 10.16818/j.issn1001-5868.2021.02.001YANG Bin, YIN Xiaojie, LI Shaoyang, et al. Recent progresses about silica-based planar lightwave circuit devices[J]. Semiconductor Optoelectronics, 2021, 42(2): 151–157,167. doi: 10.16818/j.issn1001-5868.2021.02.001 [17] 李勇奇, 蔣金宏, 余明芯, 等. 平面光波導(dǎo)光分路器耦合結(jié)構(gòu)優(yōu)化設(shè)計(jì)[J]. 光通信技術(shù), 2019, 43(7): 9–13. doi: 10.13921/j.cnki.issn1002-5561.2019.07.003LI Yongqi, JIANG Jinhong, YU Mingxin, et al. Optimal design of the coupling structure of planar lightwave circuit optical splitter[J]. Optical Communication Technology, 2019, 43(7): 9–13. doi: 10.13921/j.cnki.issn1002-5561.2019.07.003 [18] BAI Yuping, HONG Yibo, ZHAO Quanbin, et al. Supersonic shear layer characteristics of two fluids with a splitter plate[J]. International Journal of Advanced Nuclear Reactor Design and Technology, 2021, 3: 1–10. doi: 10.1016/j.jandt.2021.03.001 [19] LIN Yucheng and CHEN Liangyü. Subtle application of electrical field-induced lossy mode resonance to enhance performance of optical planar waveguide biosensor[J]. Biosensors, 2021, 11(3): 86. doi: 10.3390/bios11030086 [20] GROMOVYI M, SEMOND F, DUBOZ J Y, et al. Low loss GaN waveguides for visible light on Si substrates[J]. Journal of the European Optical Society-Rapid Publications, 2014, 9: 14050. doi: 10.2971/jeos.2014.14050 [21] THUBTHIMTHONG B, SASAKI T, and HANE K. Asymmetrically and vertically coupled hybrid Si/GaN microring resonators for on-chip optical interconnects[J]. IEEE Photonics Journal, 2015, 7(4): 7801511. doi: 10.1109/JPHOT.2015.2464721 [22] 涂興華, 倪彬, 楊爍, 等. 平面波導(dǎo)型1×4光分路器的優(yōu)化設(shè)計(jì)[J]. 計(jì)算機(jī)應(yīng)用, 2015, 35(S2): 24–26.TU Xinghua, NI Bin, YANG Shuo, et al. Optimization design of 1×4 planar lightware circuit splitter[J]. Journal of Computer Applications, 2015, 35(S2): 24–26. [23] 涂興華, 耿勝各. 一種新型1×8平面波導(dǎo)光分路器的設(shè)計(jì)[J]. 量子電子學(xué)報(bào), 2018, 35(1): 102–107. doi: 10.3969/j.issn.1007-5461.2018.01.016TU Xinghua and GENG Shengge. Design of a novel 1×8 optical power splitter based on planar waveguide[J]. Chinese Journal of Quantum Electronics, 2018, 35(1): 102–107. doi: 10.3969/j.issn.1007-5461.2018.01.016 [24] 尹小杰, 鄭之遠(yuǎn), 訾幸壯, 等. 基于Y型分支與布拉格光柵結(jié)構(gòu)的集成光芯片研究[J]. 光子學(xué)報(bào), 2021, 50(5): 0513002. doi: 10.3788/gzxb20215005.0513002YIN Xiaojie, ZHENG Zhiyuan, ZI Xingzhuang, et al. Integrated optical chip based on y-branch and Bragg grating structure[J]. Acta Photonica Sinica, 2021, 50(5): 0513002. doi: 10.3788/gzxb20215005.0513002 [25] TRIPATHY A K, TRIPATHY S K, and DAS S K. Multifunctional holographic gratings for simultaneous coupling and beam splitting applications in photonic integrated circuits[J]. International Journal of Information Technology, 2021, 13(1): 307–312. doi: 10.1007/s41870-020-00548-z [26] RAO D G S, SWARNAKAR S, and KUMAR S. Design of all-optical reversible logic gates using photonic crystal waveguides for optical computing and photonic integrated circuits[J]. Applied Optics, 2020, 59(35): 11003–11012. doi: 10.1364/AO.409404 -