一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

面向可見(jiàn)光通信的硅基InGaN/GaN多量子阱多口分路器光子集成芯片

李欣 王徐 李蕓 沙源清 蔣成偉 王永進(jìn)

李欣, 王徐, 李蕓, 沙源清, 蔣成偉, 王永進(jìn). 面向可見(jiàn)光通信的硅基InGaN/GaN多量子阱多口分路器光子集成芯片[J]. 電子與信息學(xué)報(bào), 2022, 44(8): 2649-2658. doi: 10.11999/JEIT210953
引用本文: 李欣, 王徐, 李蕓, 沙源清, 蔣成偉, 王永進(jìn). 面向可見(jiàn)光通信的硅基InGaN/GaN多量子阱多口分路器光子集成芯片[J]. 電子與信息學(xué)報(bào), 2022, 44(8): 2649-2658. doi: 10.11999/JEIT210953
LI Xin, WANG Xu, LI Yun, SHA Yuanqing, JIANG Chengwei, WANG Yongjin. Silicon-based InGaN/GaN Multi-quantum Wells Multi-port Splitter Photonic Integrated Chip for Visible Light Communication[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2649-2658. doi: 10.11999/JEIT210953
Citation: LI Xin, WANG Xu, LI Yun, SHA Yuanqing, JIANG Chengwei, WANG Yongjin. Silicon-based InGaN/GaN Multi-quantum Wells Multi-port Splitter Photonic Integrated Chip for Visible Light Communication[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2649-2658. doi: 10.11999/JEIT210953

面向可見(jiàn)光通信的硅基InGaN/GaN多量子阱多口分路器光子集成芯片

doi: 10.11999/JEIT210953
基金項(xiàng)目: 中國(guó)博士后基金 (2018M640508),南京郵電大學(xué)1311人才計(jì)劃(1311),南京郵電大學(xué)寬帶無(wú)線通信與傳感網(wǎng)技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室開(kāi)放研究基金(JZNY202109)
詳細(xì)信息
    作者簡(jiǎn)介:

    李欣:女,1984年生,副教授,研究方向?yàn)榭梢?jiàn)光通信及氮化鎵光電子器件

    王徐:女,1998年生,碩士生,研究方向?yàn)榭梢?jiàn)光通信及氮化物光電子器件

    李蕓:女,1998年生,碩士生,研究方向?yàn)榭梢?jiàn)光通信及氮化物光電子器件

    沙源清:男,1997年生,碩士生,研究方向?yàn)榭梢?jiàn)光通信及氮化物光電子器件

    蔣成偉:男,1997年生,碩士生,研究方向?yàn)榭梢?jiàn)光通信及氮化物光電子器件

    王永進(jìn):男,1977年生,教授,研究方向?yàn)橄乱淮鸁o(wú)線通信、新型光電子器件、信息功能材料及物聯(lián)網(wǎng)

    通訊作者:

    李欣 lixin1984@njupt.edu.cn

  • 中圖分類號(hào): TN256; TN929.1

Silicon-based InGaN/GaN Multi-quantum Wells Multi-port Splitter Photonic Integrated Chip for Visible Light Communication

Funds: China Postdoctoral Science Foundation Funded Project (2018M640508), The Talent Program of Nanjing University of Posts and Telecommunications (1311), The Open Research Fund of Key Laboratory of Broadband Wireless Communication and Sensor Network Technology (Nanjing University of Posts and Telecommunications), Ministry of Education (JZNY202109)
  • 摘要: 為研究面向可見(jiàn)光通信的多功能光子集成芯片,實(shí)現(xiàn)可見(jiàn)光信號(hào)發(fā)射、探測(cè)、傳輸和功率分配的一體化的復(fù)合功能,該文提出一種基于硅基InGaN/GaN多量子阱材料的微型發(fā)光二極管(LED)多口分路器結(jié)構(gòu)的光子集成芯片,對(duì)集成芯片進(jìn)行了形貌、光電特性和可見(jiàn)光通信測(cè)試等多方面表征,實(shí)現(xiàn)了對(duì)可見(jiàn)光信號(hào)的有效傳輸和不同比例的多口功率分路,并對(duì)分路器不同端口的出射光強(qiáng)進(jìn)行量化處理,最后,利用信號(hào)發(fā)生器在微型LED光源發(fā)射端加載300 kHz的矩形波電信號(hào),收集分路器末端發(fā)射的調(diào)制可見(jiàn)光信號(hào),輸入/接收信號(hào)的波形變化趨勢(shì)一致,說(shuō)明該光子集成芯片可實(shí)現(xiàn)有效的可見(jiàn)光通信。該研究的主要目的是嘗試性將可見(jiàn)光波段的光源和光電探測(cè)器集成在氮化物晶圓上,為可見(jiàn)光通信的全光網(wǎng)絡(luò)的可見(jiàn)光信號(hào)片上集成式處理提供新的研究思路和方案,為發(fā)展面向可見(jiàn)光通信網(wǎng)絡(luò)需求的復(fù)合功能光子集成芯片終端提供了更多可能性。
  • 圖  1  可見(jiàn)光信號(hào)在分路器結(jié)構(gòu)中傳輸情況的仿真模型及仿真分析結(jié)果

    圖  2  硅基InGaN/GaN多量子阱多口分路器光子集成芯片示意圖

    圖  3  硅基InGaN/GaN多量子阱多口分路器光子集成芯片加工工藝流程圖

    圖  4  硅基InGaN/GaN多量子阱多口分路器光子集成芯片的光學(xué)顯微鏡圖

    圖  5  多口分路器的掃描電子顯微鏡圖

    圖  6  多口分路器關(guān)鍵結(jié)構(gòu)的原子力顯微鏡圖

    圖  7  發(fā)光器件的電致發(fā)光總光強(qiáng)

    圖  8  硅基InGaN/GaN多量子阱多口分路器光子集成芯片在1~10 mA注入電流下的工作狀態(tài)

    圖  9  隨注入電流變化的分路器不同端口的出射光強(qiáng)曲線

    圖  10  光子集成芯片可見(jiàn)光通信測(cè)試的輸入輸出信號(hào)波形圖

    表  1  本研究與部分已發(fā)表光子集成芯片指標(biāo)對(duì)比

    包含器件功能光信號(hào)波長(zhǎng)年份
    無(wú)源光子器件光功率分配近紅外光2021[13], 2018[22]
    無(wú)源光子器件光信號(hào)傳輸1550 nm2021[16], 2019[17]
    無(wú)源光子器件光信號(hào)傳輸633 nm2016[20]
    微型LED光源光信號(hào)發(fā)射450 nm2014[8]
    有源無(wú)源光子器件發(fā)射、探測(cè)、傳輸、功率分配445 nm2022(本文)
    下載: 導(dǎo)出CSV

    表  2  分路器不同端口的出射光強(qiáng)

    電流(mA)
    345678910
    1號(hào)端口光強(qiáng)(a.u.)1854.14065.94580.96455.09363.012213.113929.814582.0
    2號(hào)端口光強(qiáng)(a.u.)330.1922.0797.91102.01964.02873.03021.03383.0
    3號(hào)端口光強(qiáng)(a.u.)147.1481.0215.1795.91944.01684.02025.01776.0
    下載: 導(dǎo)出CSV
  • [1] KUMARI M, SHEETAL A, and SHARMA R. Performance analysis of a full-duplex TWDM-PON using OFDM modulation with red LED visible light communication System[J]. Wireless Personal Communications, 2021, 119(3): 2539–2559. doi: 10.1007/s11277-021-08343-0
    [2] KHALID A, RASHID F, TAHIR U, et al. Multi-carrier visible light communication system using enhanced sub-carrier index modulation and discrete wavelet transform[J/OL]. Wireless Personal Communications, 2021.
    [3] DAWOOD M A, SALEH S S, EL-BADAWY E S A, et al. A comparative analysis of localization algorithms for visible light communication[J]. Optical and Quantum Electronics, 2021, 53(2): 108. doi: 10.1007/s11082-021-02751-z
    [4] BEHRMAN K, FOUILIOUX J, IRELAND T, et al. 37-4: Micro LED defect analysis via photoluminescent and cathodoluminescent imaging[C]. SID Symposium Digest of Technical Papers, New York, USA, 2020: 532–535.
    [5] XIA Jiye, DONG Xiaobiao, YAO Zhibo, et al. Development of high-yield laser lift-off process for micro LED display[C]. SID Symposium Digest of Technical Papers, New York, USA, 2020: 55–57.
    [6] 王家先. 基于InP/ZnS量子點(diǎn)的全彩色Micro-LED陳列顯示器件設(shè)計(jì)及制作研究[D]. [碩士論文], 中國(guó)科學(xué)院大學(xué)(中國(guó)科學(xué)院長(zhǎng)春光學(xué)精密機(jī)械與物理研究所), 2020.

    WANG Jiaxian. Design and fabrication of full-color micro-LED array device based on InP/ZnS quantum dots material[D]. [Master dissertation], Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2020.
    [7] ZHANG Shuailong, GONG Zheng, MCKENDRY J J D, et al. CMOS-controlled color-tunable smart display[J]. IEEE Photonics Journal, 2012, 4(5): 1639–1646. doi: 10.1109/JPHOT.2012.2212181
    [8] TIAN Pengfei, MCKENDRY J J D, GONG Zheng, et al. Characteristics and applications of micro-pixelated GaN-based light emitting diodes on Si substrates[J]. Journal of Applied Physics, 2014, 115(3): 033112. doi: 10.1063/1.4862298
    [9] ISLIM M S, FERREIRA R X, HE Xiangyu, et al. Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED[J]. Photonics Research, 2017, 5(2): A35–A43. doi: 10.1364/PRJ.5.000A35
    [10] PARK S I, BRENNER D S, SHIN G, et al. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics[J]. Nature Biotechnology, 2015, 33(12): 1280–1286. doi: 10.1038/nbt.3415
    [11] GUILHABERT B, MASSOUBRE D, RICHARDSON E, et al. Sub-Micron lithography using InGaN micro-LEDs: Mask-free fabrication of LED arrays[J]. IEEE Photonics Technology Letters, 2012, 24(24): 2221–2224. doi: 10.1109/LPT.2012.2225612
    [12] 梁棟, 譚慶貴, 蔣煒, 等. 面向下一代載荷系統(tǒng)應(yīng)用的光子集成芯片探索[J]. 空間電子技術(shù), 2020, 17(4): 126–131. doi: 10.3969/j.issn.1674-7135.2020.04.017

    LIANG Dong, TAN Qinggui, JIANG Wei, et al. Research on photonics integrated chips for future satellite payloads[J]. Space Electronic Technology, 2020, 17(4): 126–131. doi: 10.3969/j.issn.1674-7135.2020.04.017
    [13] ALQULIAH A, ELKABBASH M, ZHANG Jihua, et al. Ultrabroadband, compact, polarization independent and efficient metasurface-based power splitter on lithium niobate waveguides[J]. Optics Express, 2021, 29(6): 8160–8170. doi: 10.1364/OE.415676
    [14] YU Zejie, XI Xiang, MA Jingwen, et al. Photonic integrated circuits with bound states in the continuum[J]. Optica, 2019, 6(10): 1342–1348. doi: 10.1364/OPTICA.6.001342
    [15] ZHANG Yan, DU Qingyang, WANG Chuangtang, et al. Monolithic integration of broadband optical isolators for polarization-diverse silicon photonics[J]. Optica, 2019, 6(4): 473–478. doi: 10.1364/OPTICA.6.000473
    [16] 楊斌, 尹小杰, 李紹洋, 等. 二氧化硅平面光波導(dǎo)器件的研究進(jìn)展[J]. 半導(dǎo)體光電, 2021, 42(2): 151–157,167. doi: 10.16818/j.issn1001-5868.2021.02.001

    YANG Bin, YIN Xiaojie, LI Shaoyang, et al. Recent progresses about silica-based planar lightwave circuit devices[J]. Semiconductor Optoelectronics, 2021, 42(2): 151–157,167. doi: 10.16818/j.issn1001-5868.2021.02.001
    [17] 李勇奇, 蔣金宏, 余明芯, 等. 平面光波導(dǎo)光分路器耦合結(jié)構(gòu)優(yōu)化設(shè)計(jì)[J]. 光通信技術(shù), 2019, 43(7): 9–13. doi: 10.13921/j.cnki.issn1002-5561.2019.07.003

    LI Yongqi, JIANG Jinhong, YU Mingxin, et al. Optimal design of the coupling structure of planar lightwave circuit optical splitter[J]. Optical Communication Technology, 2019, 43(7): 9–13. doi: 10.13921/j.cnki.issn1002-5561.2019.07.003
    [18] BAI Yuping, HONG Yibo, ZHAO Quanbin, et al. Supersonic shear layer characteristics of two fluids with a splitter plate[J]. International Journal of Advanced Nuclear Reactor Design and Technology, 2021, 3: 1–10. doi: 10.1016/j.jandt.2021.03.001
    [19] LIN Yucheng and CHEN Liangyü. Subtle application of electrical field-induced lossy mode resonance to enhance performance of optical planar waveguide biosensor[J]. Biosensors, 2021, 11(3): 86. doi: 10.3390/bios11030086
    [20] GROMOVYI M, SEMOND F, DUBOZ J Y, et al. Low loss GaN waveguides for visible light on Si substrates[J]. Journal of the European Optical Society-Rapid Publications, 2014, 9: 14050. doi: 10.2971/jeos.2014.14050
    [21] THUBTHIMTHONG B, SASAKI T, and HANE K. Asymmetrically and vertically coupled hybrid Si/GaN microring resonators for on-chip optical interconnects[J]. IEEE Photonics Journal, 2015, 7(4): 7801511. doi: 10.1109/JPHOT.2015.2464721
    [22] 涂興華, 倪彬, 楊爍, 等. 平面波導(dǎo)型1×4光分路器的優(yōu)化設(shè)計(jì)[J]. 計(jì)算機(jī)應(yīng)用, 2015, 35(S2): 24–26.

    TU Xinghua, NI Bin, YANG Shuo, et al. Optimization design of 1×4 planar lightware circuit splitter[J]. Journal of Computer Applications, 2015, 35(S2): 24–26.
    [23] 涂興華, 耿勝各. 一種新型1×8平面波導(dǎo)光分路器的設(shè)計(jì)[J]. 量子電子學(xué)報(bào), 2018, 35(1): 102–107. doi: 10.3969/j.issn.1007-5461.2018.01.016

    TU Xinghua and GENG Shengge. Design of a novel 1×8 optical power splitter based on planar waveguide[J]. Chinese Journal of Quantum Electronics, 2018, 35(1): 102–107. doi: 10.3969/j.issn.1007-5461.2018.01.016
    [24] 尹小杰, 鄭之遠(yuǎn), 訾幸壯, 等. 基于Y型分支與布拉格光柵結(jié)構(gòu)的集成光芯片研究[J]. 光子學(xué)報(bào), 2021, 50(5): 0513002. doi: 10.3788/gzxb20215005.0513002

    YIN Xiaojie, ZHENG Zhiyuan, ZI Xingzhuang, et al. Integrated optical chip based on y-branch and Bragg grating structure[J]. Acta Photonica Sinica, 2021, 50(5): 0513002. doi: 10.3788/gzxb20215005.0513002
    [25] TRIPATHY A K, TRIPATHY S K, and DAS S K. Multifunctional holographic gratings for simultaneous coupling and beam splitting applications in photonic integrated circuits[J]. International Journal of Information Technology, 2021, 13(1): 307–312. doi: 10.1007/s41870-020-00548-z
    [26] RAO D G S, SWARNAKAR S, and KUMAR S. Design of all-optical reversible logic gates using photonic crystal waveguides for optical computing and photonic integrated circuits[J]. Applied Optics, 2020, 59(35): 11003–11012. doi: 10.1364/AO.409404
  • 加載中
圖(10) / 表(2)
計(jì)量
  • 文章訪問(wèn)數(shù):  998
  • HTML全文瀏覽量:  736
  • PDF下載量:  70
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2021-09-08
  • 修回日期:  2022-04-22
  • 網(wǎng)絡(luò)出版日期:  2022-04-28
  • 刊出日期:  2022-08-17

目錄

    /

    返回文章
    返回