基于相關(guān)性和稀疏表示的運(yùn)動(dòng)想象腦電通道選擇方法
doi: 10.11999/JEIT210778
-
1.
杭州電子科技大學(xué)自動(dòng)化學(xué)院 杭州 310018
-
2.
浙江省腦機(jī)協(xié)同智能重點(diǎn)實(shí)驗(yàn)室 杭州 310018
Correlation and Sparse Representation Based Channel Selection of Motor Imagery Electroencephalogram
-
1.
School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
-
2.
Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, China
-
摘要: 在基于運(yùn)動(dòng)想象(MI)的腦機(jī)接口(BCI)中,通常采用較多通道的腦電信號(hào)(EEG)來提高分類精度,但其中會(huì)有包含與MI任務(wù)無關(guān)或冗余信息的通道,從而影響B(tài)CI的性能提升。該文針對(duì)運(yùn)動(dòng)想象腦電分類中的通道選擇問題,提出一種采用相關(guān)性和稀疏表示對(duì)通道進(jìn)行選擇的方法(CSR-CS)。首先計(jì)算訓(xùn)練樣本每個(gè)通道的皮爾遜相關(guān)系數(shù)來選擇顯著通道,然后提取顯著通道所在區(qū)域的濾波器組共空間模式特征拼接成字典,利用由字典所得到的非零稀疏系數(shù)的個(gè)數(shù)表征每個(gè)區(qū)域的分類能力,選出顯著區(qū)域所包含的顯著通道作為最優(yōu)通道,最后采用共空間模式和支持向量機(jī)分別進(jìn)行特征提取與分類。在對(duì)BCI第3次競(jìng)賽數(shù)據(jù)集IVa和BCI第4次競(jìng)賽數(shù)據(jù)集I兩個(gè)二分類MI任務(wù)的分類實(shí)驗(yàn)中,平均分類精度達(dá)到了88.61%和83.9%,表明所提通道選擇方法的有效性和魯棒性。
-
關(guān)鍵詞:
- 腦機(jī)接口 /
- 運(yùn)動(dòng)想象 /
- 共空間模式 /
- 支持向量機(jī) /
- 通道選擇
Abstract: In Motor Imagery (MI) based Brain Computer Interface (BCI), more channels of ElectroEncephaloGram (EEG) signal are usually adopted to improve the classification accuracy. But there will be channels containing irrelevant or redundant information about MI tasks, which degenerate the performance improvement of BCI. A Channel Selection method based on Correlation and Sparse Representation (CSR-CS) is proposed for EEG classification. Firstly, the Pearson correlation coefficient of each channel of the training sample is calculated to select the significant channels. Then the filter bank common spatial pattern features of the region where the significant channels are located are extracted and spliced into a dictionary. The number of non-zero sparse coefficients obtained from the dictionary is used to characterize the classification ability of each region, and the significant channels contained in the significant regions are selected as the optimal channels. Finally, the common spatial pattern and support vector machine are employed for feature extraction and classification respectively. In the classification experiments of two categories of MI task with BCI competition III dataset IVa and BCI competition IV dataset I, the average classification accuracy reaches 88.61% and 83.9%, which indicates the effectiveness and robustness of the proposed channel selection method. -
表 1 數(shù)據(jù)集Ⅰ、數(shù)據(jù)集Ⅱ分類精度比較
受試者 方法 CCS-RCSP CSP-R-MF FCCR CSR-CS aa 82.50 81.43 78.57 86.31 al 96.80 92.41 98.21 97.74 av 71.10 70.00 72.45 72.83 aw 92.90 83.57 87.05 90.48 ay 93.90 85.00 93.25 95.71 均值 87.44 82.48 85.91 88.61 a 85.50 81.50 83.50 92.00 b 67.00 63.00 72.50 62.50 f 79.50 79.00 81.00 86.30 g 94.50 87.50 83.50 94.70 均值 81.60 77.80 80.10 83.90 p-value 0.21 <0.01 0.16 – 下載: 導(dǎo)出CSV
表 2 通道選擇與否對(duì)分類準(zhǔn)確率的影響
方法 數(shù)據(jù)集Ⅰ 數(shù)據(jù)集Ⅱ aa al av aw ay 均值 a b f g 均值 p-value AC-CSP 76.19 95.12 66.02 83.69 94.88 83.18 82.50 52.50 85.10 92.30 78.10 <0.01 CSR-CS 86.31 97.74 72.83 90.48 95.71 88.61 92.00 62.50 86.30 94.70 83.90 – 下載: 導(dǎo)出CSV
-
[1] BIRBAUMER N. Brain–computer-interface research: Coming of age[J]. Clinical Neurophysiology, 2006, 117(3): 479–483. doi: 10.1016/j.clinph.2005.11.002 [2] BLANKERTZ B, DORNHEGE G, KRAULEDAT M, et al. The non-invasive Berlin Brain–Computer Interface: Fast acquisition of effective performance in untrained subjects[J]. NeuroImage, 2007, 37(2): 539–550. doi: 10.1016/j.neuroimage.2007.01.051 [3] ALLISON B Z, KüBLER A, and JIN Jing. 30+years of P300 brain-computer interfaces[J]. Psychophysiology, 2020, 57(7): e13569. doi: 10.1111/psyp.13569 [4] HSU C C, YEH C L, LEE W K, et al. Extraction of high-frequency SSVEP for BCI control using iterative filtering based empirical mode decomposition[J]. Biomedical Signal Processing and Control, 2020, 61: 102022. doi: 10.1016/j.bspc.2020.102022 [5] ANG K K and GUAN Cuntai. EEG-based strategies to detect motor imagery for control and rehabilitation[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(4): 392–401. doi: 10.1109/TNSRE.2016.2646763 [6] RONG Yuying, WU Xiaojun, and ZHANG Yumei. Classification of motor imagery electroencephalography signals using continuous small convolutional neural network[J]. International Journal of Imaging Systems and Technology, 2020, 30(3): 653–659. doi: 10.1002/ima.22405 [7] PARK Y and CHUNG W. A novel EEG correlation coefficient feature extraction approach based on demixing EEG channel pairs for cognitive task classification[J]. IEEE Access, 2020, 8: 87422–87433. doi: 10.1109/access.2020.2993318 [8] BLANKERTZ B, LOSCH F, KRAULEDAT M, et al. The Berlin brain-computer interface: Accurate performance from first-session in BCI-naive subjects[J]. IEEE Transactions on Biomedical Engineering, 2008, 55(10): 2452–2462. doi: 10.1109/TBME.2008.923152 [9] LIU Ye, ZHANG Hao, CHEN Min, et al. A boosting-based spatial-spectral model for stroke patients’ EEG analysis in rehabilitation training[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 24(1): 169–179. doi: 10.1109/TNSRE.2015.2466079 [10] ASENSIO-CUBERO J, GAN J Q, and PALANIAPPAN R. Multiresolution analysis over simple graphs for brain computer interfaces[J]. Journal of Neural Engineering, 2013, 10(4): 046014. doi: 10.1088/1741-2560/10/4/046014 [11] FENG Jiankui, JIN Jing, DALY I, et al. An optimized channel selection method based on multifrequency CSP-Rank for motor imagery-based BCI system[J]. Computational Intelligence and Neuroscience, 2019, 2019: 8068357. doi: 10.1155/2019/8068357 [12] JIN Jing, MIAO Yangyang, DALY I, et al. Correlation-based channel selection and regularized feature optimization for MI-based BCI[J]. Neural Networks, 2019, 118: 262–270. doi: 10.1016/j.neunet.2019.07.008 [13] VARSEHI H and FIROOZABADI S M P. An EEG channel selection method for motor imagery based brain–computer interface and neurofeedback using Granger causality[J]. Neural Networks, 2021, 133: 193–206. doi: 10.1016/j.neunet.2020.11.002 [14] HAN Jiuqi, ZHAO Yuwei, SUN Hongji, et al. A fast, open EEG classification framework based on feature compression and channel ranking[J]. Frontiers in Neuroscience, 2018, 12: 217. doi: 10.3389/fnins.2018.00217 [15] CONA F, ZAVAGLIA M, ASTOLFI L, et al. Changes in EEG power spectral density and cortical connectivity in healthy and tetraplegic patients during a motor imagery task[J]. Computational Intelligence and Neuroscience, 2009, 2009: 279515. doi: 10.1155/2009/279515 [16] HAMEDI M, SALLEH S, and NOOR A M. Electroencephalographic motor imagery brain connectivity analysis for BCI: A review[J]. Neural Computation, 2016, 28(6): 999–1041. doi: 10.1162/NECO_a_00838 [17] ANG K K, CHIN Z Y, ZHANG Haihong, et al. Filter bank common spatial pattern (FBCSP) in brain-computer interface[C]. 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), Hong Kong, China, 2008: 2390–2397. [18] SHIN Y, LEE S, AHN M, et al. Noise robustness analysis of sparse representation based classification method for non-stationary EEG signal classification[J]. Biomedical Signal Processing and Control, 2015, 21: 8–18. doi: 10.1016/j.bspc.2015.05.007 [19] LI Yuanqing, NAMBURI P, YU Zhuliang, et al. Voxel selection in fMRI data analysis based on sparse representation[J]. IEEE Transactions on Biomedical Engineering, 2009, 56(10): 2439–2451. doi: 10.1109/TBME.2009.2025866 [20] XU Chunyao, SUN Chao, JIANG Guoqian, et al. Two-Level multi-domain feature extraction on sparse representation for motor imagery classification[J]. Biomedical Signal Processing and Control, 2020, 62: 102160. doi: 10.1016/j.bspc.2020.102160 [21] SREEJA S R, HIMANSHU, and SAMANTA D. Distance-based weighted sparse representation to classify motor imagery EEG signals for BCI applications[J]. Multimedia Tools and Applications, 2020, 79(19): 13775–13793. doi: 10.1007/s11042-019-08602-0 [22] JIAO Yong, ZHANG Yu, CHEN Xun, et al. Sparse group representation model for motor imagery EEG classification[J]. IEEE Journal of Biomedical and Health Informatics, 2019, 23(2): 631–641. doi: 10.1109/JBHI.2018.2832538 -