面向可見光通信的硅基InGaN/GaN多量子阱波導(dǎo)定向耦合器光子集成芯片
doi: 10.11999/JEIT210758
-
1.
南京郵電大學(xué)通信與信息工程學(xué)院 南京 210003
-
2.
南京郵電大學(xué)寬帶無線通信與傳感網(wǎng)技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室 南京 210003
Silicon-based InGaN/GaN Multiple Quantum Well Waveguide Directional Coupler Photonic Integrated Chip for Visible Light Communication
-
1.
College of Telecommunications and Information, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
-
2.
Key Laboratory of Broadband Wireless Communication and Sensor Network Technology, Ministry of Education, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
-
摘要: 利用可見光信號(hào)作為新型信息載體的光通信技術(shù)近些年來得到長(zhǎng)足發(fā)展,為了開發(fā)新一代光子集成芯片作為可見光通信網(wǎng)絡(luò)的終端器件,滿足可見光信號(hào)發(fā)射、接收、傳輸與處理的復(fù)合需求,該文基于硅基InGaN/GaN多量子阱材料,設(shè)計(jì)了一種集成可見光波段微型發(fā)光二極管(LED)光源、波導(dǎo)定向耦合器、微型光電探測(cè)器于一體的光子集成芯片。該芯片利用InGaN/GaN多量子阱材料的發(fā)光探測(cè)共存現(xiàn)象,實(shí)現(xiàn)了上述復(fù)合功能。微型LED光源作為發(fā)射端,可以發(fā)射出藍(lán)色波段的可見光信號(hào),其發(fā)光強(qiáng)度受到注入電流的線性調(diào)制,可實(shí)現(xiàn)調(diào)幅可見光通信,適合作為可見光通信的發(fā)射端。微型LED光源發(fā)射的可見光信號(hào)傳輸進(jìn)入波導(dǎo)定向耦合器,實(shí)現(xiàn)了片內(nèi)有效傳輸耦合和光功率平均分配。經(jīng)過耦合傳輸?shù)目梢姽庑盘?hào)進(jìn)入微型光電探測(cè)器,可以監(jiān)測(cè)到與耦合傳輸?shù)墓庑盘?hào)強(qiáng)度相匹配的光電流。最后,可見光通信測(cè)試也表明該芯片可實(shí)現(xiàn)有效的可見光通信。該研究為發(fā)展面向可見光通信網(wǎng)絡(luò)需求的復(fù)合功能光子集成芯片終端提供了更多可能性。Abstract: Optical communication technology using visible optical signal as a new information carrier is greatly developed in recent years. In order to develop a new generation of photonic integrated chip as a terminal device of the visible optical communication network, to meet the composite requirements of the visible optical signal transmission,reception, transmission and processing. Based on the silicon-based InGaN/GaN multi-quantum well material, a composite photon integrated chip integrating visible band micro Light-Emitting Diode (LED) light source, waveguide directional coupler and micro photodetector is designed. A luminescence detection coexistence phenomenon of a InGaN/GaN multi-quantum well material is used in this chip to achieve the above composite function. As the transmitting end, the micro LED light source can emit the blue band visible light signal. Its luminous intensity is linear modulated by the injection current, which can realize the amplitude modulation visible light communication, which is suitable for the transmitting end of visible light communication. The visible light signal transmitted by the micro LED light source is transmitted into the waveguide directional coupler, which realizes the effective in-chip transmission coupling and the average optical power distribution of the chip. After the visible light signal passed through the coupled transmission enters the microphotodetector, a photocurrent matching the intensity of the coupled transmitted light signal can be monitored. Finally, effective visible light communication of this chip is also confirmed by visible light communication testing. It provides more possibilities for developing composite functional photon integrated chip terminals facing the needs of visible optical communication networks through this reserach.
-
[1] MARET L, LAGRANGE A, and DUPRé L. Ultra-high speed optical wireless communications with gallium-nitride microLED[J]. The SPIE, 2021, 11706, 0O. [2] FERREIRA R X G, XIE Enyuan, MCKENDRY J J D, et al. High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications[J]. IEEE Photonics Technology Letters, 2016, 28(19): 2023–2026. doi: 10.1109/LPT.2016.2581318 [3] CHEN S W H, HUANG Yuming, CHANG Yunhan, et al. High-bandwidth green semipolar (20–21) InGaN/GaN micro light-emitting diodes for visible light communication[J]. ACS Photonics, 2020, 7(8): 2228–2235. doi: 10.1021/acsphotonics.0c00764 [4] 李榮玲, 商慧亮, 雷雨, 等. 高速可見光通信中關(guān)鍵使能技術(shù)研究[J]. 激光與光電子學(xué)進(jìn)展, 2013, 50(5): 050003.LI Rongling, SHANG Huiliang, LEI Yu, et al. Research of key enabling technologies for high-speed visible-light communication[J]. Laser &Optoelectronics Progress, 2013, 50(5): 050003. [5] AMIRI I S, PALAI G, ALZUBI J A, et al. Chip to chip communication through the photonic integrated circuit: A new paradigm to optical VLSI[J]. Optik, 2020, 202: 163588. doi: 10.1016/j.ijleo.2019.163588 [6] TANG Yuling and CHEN Jun. High responsivity of Gr/ n-Si Schottky junction near-infrared photodetector[J]. Superlattices and Microstructures, 2021, 150: 106803. doi: 10.1016/J.SPMI.2021.106803 [7] HE Xiangyu, XIE Enyuan, ISLIM M S, et al. 1 Gbps free-space deep-ultraviolet communications based on III-nitride micro-LEDs emitting at 262 nm[J]. Photonics Research, 2019, 7(7): B41–B47. doi: 10.1364/PRJ.7.000B41 [8] LIU Xinyu, LIU Dajian, and DAI Daoxin. Silicon polarization beam splitter at the 2 μm wavelength band by using a bent directional coupler assisted with a nano-slot waveguide[J]. Optics Express, 2020, 29(2): 2720–2726. doi: 10.1364/OE.403932 [9] BAYAL I and MAHAPATRA P K. Simulation of quantum coherence dynamics in macroscopic domain using a three-waveguide directional coupler[J]. Journal of Modern Optics, 2020, 67(10): 869–879. doi: 10.1080/09500340.2020.1780641 [10] 葛義蓉. 定向耦合器在微波傳輸系統(tǒng)中的應(yīng)用[J]. 航空計(jì)測(cè)技術(shù), 2001, 21(1): 31–32,38. doi: 10.3969/j.issn.1674-5795.2001.01.009GE Yirong. Application of directional coupler to microwave transmission system[J]. Aviation Metrology &Measurement Technology, 2001, 21(1): 31–32,38. doi: 10.3969/j.issn.1674-5795.2001.01.009 [11] 蔣平英. 脊波導(dǎo)定向耦合器的設(shè)計(jì)與研究[D]. [碩士論文], 電子科技大學(xué), 2007.JIANG Pingying. Design and research of ridge waveguide directional coupler[D]. [Master dissertation], University of Electronic Science and Technology, 2007. [12] TUGENDHAFT I, BORNSTEIN A, WEISSMAN Y, et al. Coupling efficiency of directional fiber couplers in the mid-infrared[J]. Applied Spectroscopy, 1996, 50(7): 906–909. doi: 10.1366/0003702963905420 [13] JANG H S, PARK K N, and LEE K S. Characterization of tunable photonic crystal fiber directional couplers[J]. Applied Optics, 2007, 46(18): 3688–3693. doi: 10.1364/AO.46.003688 [14] MALKA D, DANAN Y, RAMON Y, et al. A photonic 1 × 4 power splitter based on multimode interference in silicon–gallium-nitride slot waveguide structures[J]. Materials, 2016, 9(7): 516. doi: 10.3390/ma9070516 [15] HAMIDAH M and PURNAMANINGSIH R W. An S-bend based optical directional coupler using GaN semiconductor[C]. 2019 IEEE International Conference on Innovative Research and Development (ICIRD), Jakarta, Indonesia, 2019: 1–4. [16] PURNAMANINGSIH R W, HAMIDAH M, FITHRIATY D, et al. A GaN/sapphire 1 × 4 optical power splitter using five rectangular waveguide for underwater application[C]. 2018 IEEE 5th International Conference on Engineering Technologies and Applied Sciences (ICETAS), Bangkok, Thailand, 2018: 1–5. [17] ZHANG Yanfeng, MCKNIGHT L, WATSON I M, et al. Compact large-cross-section GaN directional couplers[C]. IEEE Photonic Society 24th Annual Meeting, Arlington, USA, 2011: 407–408. [18] THUBTHIMTHONG B, SASAKI T, and HANE K. Photonic-crystal-waveguide-assisted directional couplers for hybrid Si/GaN nanophotonics[C]. 2014 International Conference on Optical MEMS and Nanophotonics, Glasgow, UK, 2014: 201–202. [19] ENGIN E, O'BRIEN J L, and CRYAN M J. Design and analysis of a gallium nitride-on-sapphire tunable photonic crystal directional coupler[J]. Journal of the Optical Society of America B, 2012, 29(6): 1157–1164. doi: 10.1364/JOSAB.29.001157 [20] YUAN Jialei, GAO Xumin, YANG Yongchao, et al. GaN directional couplers for on-chip optical interconnect[J]. Semiconductor Science and Technology, 2017, 32(4): 045001. doi: 10.1088/1361-6641/aa59ef [21] PARK J Y, LEE J H, JUNG S, et al. InGaN/GaN-based green-light-emitting diodes with an inserted InGaN/GaN-graded superlattice layer[J]. Physica Status Solidi (a) , 2016, 213(6): 1610–1614. doi: 10.1002/pssa.201533092 [22] DAS D, AIELLO A, GUO Wei, et al. InGaN/GaN quantum dots on silicon with coalesced nanowire buffer layers: A potential technology for visible silicon photonics[J]. IEEE Transactions on Nanotechnology, 2020, 19: 571–574. doi: 10.1109/TNANO.2020.3007732 -