一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

面向可見光通信的硅基InGaN/GaN多量子阱波導(dǎo)定向耦合器光子集成芯片

李欣 李蕓 王徐 沙源清 蔣成偉 王永進(jìn)

李欣, 李蕓, 王徐, 沙源清, 蔣成偉, 王永進(jìn). 面向可見光通信的硅基InGaN/GaN多量子阱波導(dǎo)定向耦合器光子集成芯片[J]. 電子與信息學(xué)報(bào), 2022, 44(8): 2695-2702. doi: 10.11999/JEIT210758
引用本文: 李欣, 李蕓, 王徐, 沙源清, 蔣成偉, 王永進(jìn). 面向可見光通信的硅基InGaN/GaN多量子阱波導(dǎo)定向耦合器光子集成芯片[J]. 電子與信息學(xué)報(bào), 2022, 44(8): 2695-2702. doi: 10.11999/JEIT210758
LI Xin, LI Yun, WANG Xu, SHA Yuanqing, JIANG Chengwei, WANG Yongjin. Silicon-based InGaN/GaN Multiple Quantum Well Waveguide Directional Coupler Photonic Integrated Chip for Visible Light Communication[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2695-2702. doi: 10.11999/JEIT210758
Citation: LI Xin, LI Yun, WANG Xu, SHA Yuanqing, JIANG Chengwei, WANG Yongjin. Silicon-based InGaN/GaN Multiple Quantum Well Waveguide Directional Coupler Photonic Integrated Chip for Visible Light Communication[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2695-2702. doi: 10.11999/JEIT210758

面向可見光通信的硅基InGaN/GaN多量子阱波導(dǎo)定向耦合器光子集成芯片

doi: 10.11999/JEIT210758
基金項(xiàng)目: 中國(guó)博士后基金 (2018M640508),南京郵電大學(xué)1311人才計(jì)劃,南京郵電大學(xué)寬帶無線通信與傳感網(wǎng)技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室開放研究基金
詳細(xì)信息
    作者簡(jiǎn)介:

    李欣:女,1984年生,副教授,研究方向?yàn)榭梢姽馔ㄐ偶暗壒怆娮悠骷?/p>

    李蕓:女,1998年生,碩士生,研究方向?yàn)榭梢姽馔ㄐ偶暗锕怆娮悠骷?/p>

    王徐:女,1998年生,碩士生,研究方向?yàn)榭梢姽馔ㄐ偶暗锕怆娮悠骷?/p>

    沙源清:男,1997年生,碩士生,研究方向?yàn)榭梢姽馔ㄐ偶暗锕怆娮悠骷?/p>

    蔣成偉:男,1997年生,碩士生,研究方向?yàn)榭梢姽馔ㄐ偶暗锕怆娮悠骷?/p>

    通訊作者:

    李欣 lixin1984@njupt.edu.cn

  • 中圖分類號(hào): TN929.1; TN256

Silicon-based InGaN/GaN Multiple Quantum Well Waveguide Directional Coupler Photonic Integrated Chip for Visible Light Communication

Funds: China Postdoctoral Science Foundation (2018M640508), Talent Program of Nanjing University of Posts and Telecommunications, Open research fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology (Nanjing University of Posts and Telecommunications), Ministry of Education
  • 摘要: 利用可見光信號(hào)作為新型信息載體的光通信技術(shù)近些年來得到長(zhǎng)足發(fā)展,為了開發(fā)新一代光子集成芯片作為可見光通信網(wǎng)絡(luò)的終端器件,滿足可見光信號(hào)發(fā)射、接收、傳輸與處理的復(fù)合需求,該文基于硅基InGaN/GaN多量子阱材料,設(shè)計(jì)了一種集成可見光波段微型發(fā)光二極管(LED)光源、波導(dǎo)定向耦合器、微型光電探測(cè)器于一體的光子集成芯片。該芯片利用InGaN/GaN多量子阱材料的發(fā)光探測(cè)共存現(xiàn)象,實(shí)現(xiàn)了上述復(fù)合功能。微型LED光源作為發(fā)射端,可以發(fā)射出藍(lán)色波段的可見光信號(hào),其發(fā)光強(qiáng)度受到注入電流的線性調(diào)制,可實(shí)現(xiàn)調(diào)幅可見光通信,適合作為可見光通信的發(fā)射端。微型LED光源發(fā)射的可見光信號(hào)傳輸進(jìn)入波導(dǎo)定向耦合器,實(shí)現(xiàn)了片內(nèi)有效傳輸耦合和光功率平均分配。經(jīng)過耦合傳輸?shù)目梢姽庑盘?hào)進(jìn)入微型光電探測(cè)器,可以監(jiān)測(cè)到與耦合傳輸?shù)墓庑盘?hào)強(qiáng)度相匹配的光電流。最后,可見光通信測(cè)試也表明該芯片可實(shí)現(xiàn)有效的可見光通信。該研究為發(fā)展面向可見光通信網(wǎng)絡(luò)需求的復(fù)合功能光子集成芯片終端提供了更多可能性。
  • 圖  1  光子集成芯片的結(jié)構(gòu)與制備圖

    圖  2  硅基InGaN/GaN多量子阱波導(dǎo)定向耦合器光子集成芯片的光學(xué)顯微鏡圖

    圖  3  波導(dǎo)定向耦合器的掃描電子顯微鏡圖

    圖  4  波導(dǎo)定向耦合器的原子力顯微鏡圖片

    圖  5  微型LED光源的電學(xué)特性圖

    圖  6  微型LED光源的電致發(fā)光特性圖

    圖  7  不同注入電流下光子集成芯片的工作圖片

    圖  8  不同注入電流下驅(qū)動(dòng)微型LED光源時(shí)光電探測(cè)器接收到的光電流曲線

    圖  9  波導(dǎo)定向耦合器仿真模型與分析

    圖  10  微型LED光源的可見光通信測(cè)試圖

  • [1] MARET L, LAGRANGE A, and DUPRé L. Ultra-high speed optical wireless communications with gallium-nitride microLED[J]. The SPIE, 2021, 11706, 0O.
    [2] FERREIRA R X G, XIE Enyuan, MCKENDRY J J D, et al. High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications[J]. IEEE Photonics Technology Letters, 2016, 28(19): 2023–2026. doi: 10.1109/LPT.2016.2581318
    [3] CHEN S W H, HUANG Yuming, CHANG Yunhan, et al. High-bandwidth green semipolar (20–21) InGaN/GaN micro light-emitting diodes for visible light communication[J]. ACS Photonics, 2020, 7(8): 2228–2235. doi: 10.1021/acsphotonics.0c00764
    [4] 李榮玲, 商慧亮, 雷雨, 等. 高速可見光通信中關(guān)鍵使能技術(shù)研究[J]. 激光與光電子學(xué)進(jìn)展, 2013, 50(5): 050003.

    LI Rongling, SHANG Huiliang, LEI Yu, et al. Research of key enabling technologies for high-speed visible-light communication[J]. Laser &Optoelectronics Progress, 2013, 50(5): 050003.
    [5] AMIRI I S, PALAI G, ALZUBI J A, et al. Chip to chip communication through the photonic integrated circuit: A new paradigm to optical VLSI[J]. Optik, 2020, 202: 163588. doi: 10.1016/j.ijleo.2019.163588
    [6] TANG Yuling and CHEN Jun. High responsivity of Gr/ n-Si Schottky junction near-infrared photodetector[J]. Superlattices and Microstructures, 2021, 150: 106803. doi: 10.1016/J.SPMI.2021.106803
    [7] HE Xiangyu, XIE Enyuan, ISLIM M S, et al. 1 Gbps free-space deep-ultraviolet communications based on III-nitride micro-LEDs emitting at 262 nm[J]. Photonics Research, 2019, 7(7): B41–B47. doi: 10.1364/PRJ.7.000B41
    [8] LIU Xinyu, LIU Dajian, and DAI Daoxin. Silicon polarization beam splitter at the 2 μm wavelength band by using a bent directional coupler assisted with a nano-slot waveguide[J]. Optics Express, 2020, 29(2): 2720–2726. doi: 10.1364/OE.403932
    [9] BAYAL I and MAHAPATRA P K. Simulation of quantum coherence dynamics in macroscopic domain using a three-waveguide directional coupler[J]. Journal of Modern Optics, 2020, 67(10): 869–879. doi: 10.1080/09500340.2020.1780641
    [10] 葛義蓉. 定向耦合器在微波傳輸系統(tǒng)中的應(yīng)用[J]. 航空計(jì)測(cè)技術(shù), 2001, 21(1): 31–32,38. doi: 10.3969/j.issn.1674-5795.2001.01.009

    GE Yirong. Application of directional coupler to microwave transmission system[J]. Aviation Metrology &Measurement Technology, 2001, 21(1): 31–32,38. doi: 10.3969/j.issn.1674-5795.2001.01.009
    [11] 蔣平英. 脊波導(dǎo)定向耦合器的設(shè)計(jì)與研究[D]. [碩士論文], 電子科技大學(xué), 2007.

    JIANG Pingying. Design and research of ridge waveguide directional coupler[D]. [Master dissertation], University of Electronic Science and Technology, 2007.
    [12] TUGENDHAFT I, BORNSTEIN A, WEISSMAN Y, et al. Coupling efficiency of directional fiber couplers in the mid-infrared[J]. Applied Spectroscopy, 1996, 50(7): 906–909. doi: 10.1366/0003702963905420
    [13] JANG H S, PARK K N, and LEE K S. Characterization of tunable photonic crystal fiber directional couplers[J]. Applied Optics, 2007, 46(18): 3688–3693. doi: 10.1364/AO.46.003688
    [14] MALKA D, DANAN Y, RAMON Y, et al. A photonic 1 × 4 power splitter based on multimode interference in silicon–gallium-nitride slot waveguide structures[J]. Materials, 2016, 9(7): 516. doi: 10.3390/ma9070516
    [15] HAMIDAH M and PURNAMANINGSIH R W. An S-bend based optical directional coupler using GaN semiconductor[C]. 2019 IEEE International Conference on Innovative Research and Development (ICIRD), Jakarta, Indonesia, 2019: 1–4.
    [16] PURNAMANINGSIH R W, HAMIDAH M, FITHRIATY D, et al. A GaN/sapphire 1 × 4 optical power splitter using five rectangular waveguide for underwater application[C]. 2018 IEEE 5th International Conference on Engineering Technologies and Applied Sciences (ICETAS), Bangkok, Thailand, 2018: 1–5.
    [17] ZHANG Yanfeng, MCKNIGHT L, WATSON I M, et al. Compact large-cross-section GaN directional couplers[C]. IEEE Photonic Society 24th Annual Meeting, Arlington, USA, 2011: 407–408.
    [18] THUBTHIMTHONG B, SASAKI T, and HANE K. Photonic-crystal-waveguide-assisted directional couplers for hybrid Si/GaN nanophotonics[C]. 2014 International Conference on Optical MEMS and Nanophotonics, Glasgow, UK, 2014: 201–202.
    [19] ENGIN E, O'BRIEN J L, and CRYAN M J. Design and analysis of a gallium nitride-on-sapphire tunable photonic crystal directional coupler[J]. Journal of the Optical Society of America B, 2012, 29(6): 1157–1164. doi: 10.1364/JOSAB.29.001157
    [20] YUAN Jialei, GAO Xumin, YANG Yongchao, et al. GaN directional couplers for on-chip optical interconnect[J]. Semiconductor Science and Technology, 2017, 32(4): 045001. doi: 10.1088/1361-6641/aa59ef
    [21] PARK J Y, LEE J H, JUNG S, et al. InGaN/GaN-based green-light-emitting diodes with an inserted InGaN/GaN-graded superlattice layer[J]. Physica Status Solidi (a) , 2016, 213(6): 1610–1614. doi: 10.1002/pssa.201533092
    [22] DAS D, AIELLO A, GUO Wei, et al. InGaN/GaN quantum dots on silicon with coalesced nanowire buffer layers: A potential technology for visible silicon photonics[J]. IEEE Transactions on Nanotechnology, 2020, 19: 571–574. doi: 10.1109/TNANO.2020.3007732
  • 加載中
圖(10)
計(jì)量
  • 文章訪問數(shù):  1166
  • HTML全文瀏覽量:  399
  • PDF下載量:  100
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2021-07-30
  • 修回日期:  2022-03-22
  • 網(wǎng)絡(luò)出版日期:  2022-03-31
  • 刊出日期:  2022-08-17

目錄

    /

    返回文章
    返回