基于Rao-Blackwellised粒子濾波的相控陣導(dǎo)引頭指向誤差斜率在線估計(jì)
doi: 10.11999/JEIT210607
-
中國空空導(dǎo)彈研究院 洛陽 471009
Online Estimation for Phased Array Seeker Pointing Error Slope Using Rao-Blackwellised Particle Filters
-
China Airborne Missile Academy, Luoyang 471009, China
-
摘要: 針對相控陣導(dǎo)引頭指向誤差斜率對導(dǎo)彈制導(dǎo)系統(tǒng)帶來的寄生回路振蕩問題,該文提出一種指向誤差斜率在線估計(jì)的算法,并能同步估計(jì)出目標(biāo)狀態(tài)。基于Rao-Blackwellised粒子濾波(RBPF),將指向誤差斜率和目標(biāo)狀態(tài)同步估計(jì)問題分解為兩個問題:一個是指向誤差斜率的后驗(yàn)估計(jì)問題,另一個是以指向誤差斜率估計(jì)為條件的目標(biāo)狀態(tài)估計(jì)問題。該文給出了算法的推導(dǎo)過程,并進(jìn)行了數(shù)字仿真驗(yàn)證。仿真結(jié)果表明,該文所提算法對于相控陣導(dǎo)引頭指向誤差斜率的估計(jì)性能優(yōu)良;并能同時準(zhǔn)確估計(jì)出目標(biāo)狀態(tài)信息。采用此信息形成導(dǎo)引指令,可以消除指向誤差斜率對制導(dǎo)系統(tǒng)的不利影響,提高系統(tǒng)的穩(wěn)定性和制導(dǎo)精度。
-
關(guān)鍵詞:
- 相控陣導(dǎo)引頭 /
- 指向誤差斜率 /
- 目標(biāo)狀態(tài) /
- 在線同步估計(jì) /
- Rao-Blackwellised粒子濾波
Abstract: Considering the problem of parasitic loop oscillation caused by pointing error slope of phased array seeker for missile guidance system, an estimation algorithm of pointing error slope is proposed, and target state can be estimated synchronously. Based on the Rao-Blackwellised Particle Filters (RBPF), the simultaneous estimation of pointing error slope and target state is decomposed into two problems: one is the posterior estimation of pointing error slope, the other is the target state estimation conditional on the estimation of pointing error slope. The derivation process of the algorithm is given and the numerical simulation is carried out. The simulation results show that the algorithm proposed has better performance in estimating the pointing error slope of phased array seeker, and the target state information can be estimated accurately at the same time. Using this information to form the guidance command can eliminate the adverse effects of pointing error slope on the guidance system, and improve system stability and guidance accuracy. -
表 1 仿真初始條件
符號 定義 取值 ${V_{\rm{T}}}$ 目標(biāo)速度 300 m/s ${V_{\rm{M}}}$ 導(dǎo)彈速度 600 m/s ${D_0}$ 導(dǎo)彈目標(biāo)初始距離 10000 m ${\theta _{\rm{M}}}$ 導(dǎo)彈初始偏角 15° ${\theta _{\rm{T}}}$ 目標(biāo)飛行偏角 160° 下載: 導(dǎo)出CSV
表 2 仿真參數(shù)
符號 定義 取值 SNR 信噪比 25 dB ${\sigma _R}$ 導(dǎo)引頭角度測量噪聲 1 mrad M 粒子數(shù) 100 [a,b] 均勻分布區(qū)間 [–0.06, 0.06] 下載: 導(dǎo)出CSV
-
[1] MANCUSO Y, GREMILLET P, and LACOMME P. T/R-Modules technological and technical trends for phased array antennas[C]. 2005 European Microwave Conference, Paris, France, 2006: 4. [2] 樊會濤, 閆俊. 相控陣制導(dǎo)技術(shù)發(fā)展現(xiàn)狀及展望[J]. 航空學(xué)報(bào), 2015, 36(9): 2807–2814.FAN Huitao and YAN Jun. Development and Outlook of active electronically scanned array guidance technology[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9): 2807–2814. [3] 趙鴻燕. 國外相控陣?yán)走_(dá)導(dǎo)引頭技術(shù)發(fā)展研究[J]. 航空兵器, 2018(3): 11–17.ZHAO Hongyan. Research on overseas phased array radar seeker technology development[J]. Aero Weaponry, 2018(3): 11–17. [4] NESLINE F W and ZARCHAN P. Line-of-sight reconstruction for faster homing guidance[J]. Journal of Guidance, Control, and Dynamics, 1985, 8(1): 3–8. doi: 10.2514/3.19927 [5] 王迪, 王雪梅, 何岷, 等. 基于有源單元方向圖等效法的彈載相控陣天線互耦補(bǔ)償[J]. 科學(xué)技術(shù)與工程, 2019, 19(32): 194–198. doi: 10.3969/j.issn.1671-1815.2019.32.028WANG Di, WANG Xuemei, HE Min, et al. Mutual coupling compensation of missile-loaded phased array antenna based on active element pattern equivalent method[J]. Science Technology and Engineering, 2019, 19(32): 194–198. doi: 10.3969/j.issn.1671-1815.2019.32.028 [6] 廖志忠, 王琪. 雷達(dá)導(dǎo)引頭指向誤差對導(dǎo)彈制導(dǎo)的影響與對策[J]. 系統(tǒng)工程與電子技術(shù), 2021, 43(2): 519–525.LIAO Zhizhong and WANG Qi. Influence and countermeasures of radar seeker pointing error on missile guidance[J]. Systems Engineering and Electronics, 2021, 43(2): 519–525. [7] YU Jing, LU Zhiyi, LI Xiangping, et al. Performance analysis of beam error parasitic loop of phased array radar seeker[J]. Icg, 2018, 14(11): 2752–2759. [8] WILLMAN W. Radome compensation using adaptive dither[R]. AAAI-98-4415, 1998. [9] ZARCHAN P and GRATT H. Adaptive Radome compensation using dither[J]. Journal of Guidance, Control, and Dynamics, 1999, 22(1): 51–57. doi: 10.2514/2.4370 [10] YUEH W R. Adaptive estimation scheme for radome error calibration[C]. The 22nd IEEE Conference on Decision and Control, San Antonio, USA, 1983: 546–551. [11] LIN J M and CHAU Y F. Radome slope compensation using multiple-model Kalman filters[J]. Journal of Guidance, Control, and Dynamics, 1995, 18(3): 637–640. doi: 10.2514/3.21438 [12] 曹曉瑞, 董朝陽, 王青, 等. 基于EKF的天線罩誤差斜率多模型估計(jì)方法[J]. 航空學(xué)報(bào), 2010, 31(8): 1608–1613.CAO Xiaorui, DONG Chaoyang, WANG Qing, et al. Radome slope estimation using multiple model based on EKF[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(8): 1608–1613. [13] 周荻, 李君龍, 袁宇祺. 一種雷達(dá)導(dǎo)引頭天線罩斜率誤差實(shí)時估計(jì)方法[J]. 現(xiàn)代防御技術(shù), 2020, 48(5): 1–9. doi: 10.3969/j.issn.1009-086x.2020.05.001ZHOU Di, LI Junlong, and YUAN Yuqi. An real-time estimation algorithm for slope error of Radome of radar seeker[J]. Modern Defence Technology, 2020, 48(5): 1–9. doi: 10.3969/j.issn.1009-086x.2020.05.001 [14] 宗睿, 林德福, 蘭玲, 等. 考慮天線罩誤差的雷達(dá)導(dǎo)引頭隔離度影響與UKF在線補(bǔ)償[J]. 北京理工大學(xué)學(xué)報(bào), 2016, 36(12): 1269–1278.ZONG Rui, LIN Defu, LAN Ling, et al. Influence of radar seeker disturbance rejection rate with Radome error and on-line compensation with UKF[J]. Transactions of Beijing Institute of Technology, 2016, 36(12): 1269–1278. [15] 金鵬飛, 于劍橋, 艾曉琳, 等. 基于模型參考自適應(yīng)的天線罩誤差斜率估計(jì)[J]. 彈箭與制導(dǎo)學(xué)報(bào), 2018, 38(6): 135–139.JIN Pengfei, YU Jianqiao, AI Xiaolin, et al. Estimation of Radome boresight error slope based on model reference adaptive system[J]. Journal of Projectiles,Rockets,Missiles and Guidance, 2018, 38(6): 135–139. [16] LIN S Y, LIN Defu, and WANG Wei. A Novel online estimation and compensation method for strapdown phased array seeker disturbance rejection effect using extended state Kalman filter[J]. IEEE Access, 2019, 7: 172330–172340. doi: 10.1109/ACCESS.2019.2956256 [17] JIA Danping, DUAN Guangxue, WANG Nan, et al. Simultaneous localization and mapping based on Lidar[C]. The 2019 Chinese Control and Decision Conference (CCDC), Nanchang, China, 2019: 5528–5532. [18] DOUCET A, DE FREITAS N, MURPHY K P, et al. Rao-Blackwellised particle filtering for dynamic Bayesian networks[C]. The 16th Conference on Uncertainty in Artificial Intelligence, San Francisco, USA, 2000: 176–183. [19] MONTEMERLO M, THRUN S, KOLLER D, et al. . FastSLAM: A factored solution to the simultaneous localization and mapping problem[C]. The Eighteenth National Conference on Artificial Intelligence, Edmonton, Canada, 2002: 593–598. [20] GRISETTI G, STACHNISS C, and BURGARD W. Improved techniques for grid mapping with Rao-Blackwellized particle filters[J]. IEEE Transactions on Robotics, 2007, 23(1): 34–46. doi: 10.1109/TRO.2006.889486 [21] BAILEY T, NIETO J, and NEBOT E. Consistency of the FastSLAM algorithm[C]. 2006 IEEE International Conference on Robotics and Automation, Orlando, USA, 2006: 424–429. [22] ZARCHAN P. Tactical and Strategic Missile Guidance[M]. 6th ed. Virginia: AIAA Inc. , 2012: 656–660. [23] SINGER R A and STEIN J J. An optimal tracking filter for processing sensor data of imprecisely determined origin in surveillance systems[C]. 1971 IEEE Conference on Decision and Control, Miami, USA, 1971: 171–175. [24] ARULAMPALAM M S, MASKELL S, GORDON N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 174–188. doi: 10.1109/78.978374 [25] DOUC R and CAPPE O. Comparison of resampling schemes for particle filtering[C]. ISPA 2005. Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, Zagreb, Croatia, 2005: 64–69. [26] JULIER S J and UHLMANN J K. Unscented filtering and nonlinear estimation[J]. Proceedings of the IEEE, 2004, 92(3): 401–422. doi: 10.1109/JPROC.2003.823141 -