一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于多層感知卷積和通道加權(quán)的圖像隱寫(xiě)檢測(cè)

葉學(xué)義 郭文風(fēng) 曾懋勝 張珂紳 趙知?jiǎng)?/a>

葉學(xué)義, 郭文風(fēng), 曾懋勝, 張珂紳, 趙知?jiǎng)? 基于多層感知卷積和通道加權(quán)的圖像隱寫(xiě)檢測(cè)[J]. 電子與信息學(xué)報(bào), 2022, 44(8): 2949-2956. doi: 10.11999/JEIT210537
引用本文: 葉學(xué)義, 郭文風(fēng), 曾懋勝, 張珂紳, 趙知?jiǎng)? 基于多層感知卷積和通道加權(quán)的圖像隱寫(xiě)檢測(cè)[J]. 電子與信息學(xué)報(bào), 2022, 44(8): 2949-2956. doi: 10.11999/JEIT210537
YE Xueyi, GUO Wenfeng, ZENG Maosheng, ZHANG Keshen, ZHAO Zhijin. Image Steganography Detection Based on Multilayer Perceptual Convolution and Channel Weighting[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2949-2956. doi: 10.11999/JEIT210537
Citation: YE Xueyi, GUO Wenfeng, ZENG Maosheng, ZHANG Keshen, ZHAO Zhijin. Image Steganography Detection Based on Multilayer Perceptual Convolution and Channel Weighting[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2949-2956. doi: 10.11999/JEIT210537

基于多層感知卷積和通道加權(quán)的圖像隱寫(xiě)檢測(cè)

doi: 10.11999/JEIT210537
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(U19B2016, 60802047)
詳細(xì)信息
    作者簡(jiǎn)介:

    葉學(xué)義:男,1973年生,副教授,研究方向?yàn)閳D像處理、模式識(shí)別、信息隱藏

    郭文風(fēng):女,1997年生,碩士生,研究方向?yàn)閳D像隱寫(xiě)檢測(cè)

    曾懋勝:男,1998年生,碩士生,研究方向?yàn)橛?jì)算機(jī)視覺(jué)

    張珂紳:男,1996年生,碩士生,研究方向?yàn)楹撩撞z測(cè)

    趙知?jiǎng)牛号?959年生,教授,研究方向?yàn)樾盘?hào)處理、軟件無(wú)線電

    通訊作者:

    郭文風(fēng) gwf@hdu.edu.cn

  • 中圖分類號(hào): TN911.73; TP309.2

Image Steganography Detection Based on Multilayer Perceptual Convolution and Channel Weighting

Funds: The National Natural Science Foundation of China (U19B2016, 60802047)
  • 摘要: 針對(duì)目前圖像隱寫(xiě)檢測(cè)模型中線性卷積層對(duì)高階特征表達(dá)能力有限,以及各通道特征圖沒(méi)有區(qū)分的問(wèn)題,該文構(gòu)建了一個(gè)基于多層感知卷積和通道加權(quán)的卷積神經(jīng)網(wǎng)絡(luò)(CNN)隱寫(xiě)檢測(cè)模型。該模型使用多層感知卷積(Mlpconv)代替?zhèn)鹘y(tǒng)的線性卷積,增強(qiáng)隱寫(xiě)檢測(cè)模型對(duì)高階特征的表達(dá)能力;同時(shí)引入通道加權(quán)模塊,實(shí)現(xiàn)根據(jù)全局信息對(duì)每個(gè)卷積通道賦予不同的權(quán)重,增強(qiáng)有用特征并抑制無(wú)用特征,增強(qiáng)模型提取檢測(cè)特征的質(zhì)量。實(shí)驗(yàn)結(jié)果表明,該檢測(cè)模型針對(duì)不同典型隱寫(xiě)算法及不同嵌入率,相比Xu-Net, Yedroudj-Net, Zhang-Net均有更高的檢測(cè)準(zhǔn)確率,與最優(yōu)的Zhu-Net相比,準(zhǔn)確率提高1.95%~6.15%。
  • 圖  1  Yedroudj-Net[12]CNN架構(gòu)

    圖  2  本文檢測(cè)模型

    圖  3  線性卷積層

    圖  4  Mlpconv層

    圖  5  SE模塊結(jié)構(gòu)圖

    圖  6  模型所提取部分特征圖

    圖  7  不同Mlpconv層數(shù)實(shí)驗(yàn)結(jié)果圖

    表  1  Yedroudj-Net[12]修改預(yù)處理層前后準(zhǔn)確率(%)

    檢測(cè)模型WOWS-UNIWARD
    0.2 bpp0.4 bpp0.2 bpp0.4 bpp
    Yedroudj-Net[12]72.2085.9063.3077.20
    改進(jìn)預(yù)處理層的Yedroudj-Net77.2187.5468.8181.91
    下載: 導(dǎo)出CSV

    表  2  本文模型與其他模型的對(duì)比結(jié)果(%)

    檢測(cè)模型WOWS-UNIWARD
    0.2 bpp0.4 bpp0.2 bpp0.4 bpp
    Xu-Net[10]67.6079.3060.8072.80
    Yedroudj-Net[12]72.2085.9063.3077.20
    Zhang-Net[13]76.7088.2071.5084.70
    本文模型80.7289.5976.9487.66
    下載: 導(dǎo)出CSV

    表  3  通道加權(quán)前后模型的檢測(cè)準(zhǔn)確率(%)

    本文模型WOWS-UNIWARD
    0.2bpp0.4bpp0.2bpp0.4bpp
    通道加權(quán)前80.7289.5976.9487.66
    通道加權(quán)后81.2590.1577.6588.10
    下載: 導(dǎo)出CSV
  • [1] LIU Jia, KE Yan, ZHANG Zhuo, et al. Recent advances of image steganography with generative adversarial networks[J]. IEEE Access, 2020, 8: 60575–60597. doi: 10.1109/ACCESS.2020.2983175
    [2] PEVNY T, BAS P, and FRIDRICH J. Steganalysis by subtractive pixel adjacency matrix[J]. IEEE Transactions on information Forensics and Security, 2010, 5(2): 215–224. doi: 10.1109/TIFS.2010.2045842
    [3] FRIDRICH J and KODOVSKY J. Rich models for steganalysis of digital images[J]. IEEE Transactions on Information Forensics and Security, 2012, 7(3): 868–882. doi: 10.1109/tifs.2012.2190402
    [4] 付章杰, 李恩露, 程旭, 等. 基于深度學(xué)習(xí)的圖像隱寫(xiě)研究進(jìn)展[J]. 計(jì)算機(jī)研究與發(fā)展, 2021, 58(3): 548–568. doi: 10.7544/issn1000-1239.2021.20200360

    FU Zhangjie, LI Enlu, CHENG Xu, et al. Recent advances in image steganography based on deep learning[J]. Computer Research and Development, 2021, 58(3): 548–568. doi: 10.7544/issn1000-1239.2021.20200360
    [5] SHARIFZADEH M, ALORAINI M, and SCHONFELD D. Adaptive batch size image merging steganography and quantized Gaussian image steganography[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 867–879. doi: 10.1109/TIFS.2019.2929441
    [6] LAISHRAM D and TUITHUNG T. A novel minimal distortion-based edge adaptive image steganography scheme using local complexity[J]. Multimedia Tools and Applications, 2021, 80(1): 831–854. doi: 10.1007/S11042-020-09519-9
    [7] 陳君夫, 付章杰, 張衛(wèi)明, 等. 基于深度學(xué)習(xí)的圖像隱寫(xiě)分析綜述[J]. 軟件學(xué)報(bào), 2021, 32(2): 551–578. doi: 10.13328/j.cnki.jos.006135

    CHEN Junfu, FU Zhangjie, ZHANG Weiming, et al. Review of image steganalysis based on deep learning[J]. Journal of Software, 2021, 32(2): 551–578. doi: 10.13328/j.cnki.jos.006135
    [8] TAN Shunquan and LI Bin. Stacked convolutional auto-encoders for steganalysis of digital images[C]. Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific, Siem Reap, Cambodia, 2014: 1–4.
    [9] QIAN Yinlong, DONG Jing, WANG Wei, et al. Deep learning for steganalysis via convolutional neural networks[J]. SPIE, 2015, 9409.
    [10] XU Guanshuo, WU Hanzhou, and SHI Yunqing. Structural design of convolutional neural networks for steganalysis[J]. IEEE Signal Processing Letters, 2016, 23(5): 708–712. doi: 10.1109/LSP.2016.2548421
    [11] YE Jian, NI Jiangqun, and YI Yang. Deep learning hierarchical representations for image steganalysis[J]. IEEE Transactions on Information Forensics and Security, 2017, 12(11): 2545–2557. doi: 10.1109/TIFS.2017.2710946
    [12] YEDROUDJ M, COMBY F, and CHAUMONT M. Yedrouj-Net: An efficient CNN for spatial steganalysis[C]. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, Canada, 2018: 2092–2096.
    [13] ZHANG Ru, ZHU Feng, LIU Jianyi, et al. Depth-wise separable convolutions and multi-level pooling for an efficient spatial CNN-based steganalysis[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 1138–1150. doi: 10.1109/TIFS.2019.2936913
    [14] HOLUB V and FRIDRICH J. Designing steganographic distortion using directional filters[C]. 2012 IEEE International Workshop on Information Forensics and Security (WIFS), Costa Adeje, Spain, 2012: 234–239.
    [15] HOLUB V, FRIDRICH J, and DENEMARK T. Universal distortion function for steganography in an arbitrary domain[J]. EURASIP Journal on Information Security, 2014, 2014: 1. doi: 10.1186/1687-417X-2014-1
    [16] MEMISEVIC R, ZACH C, HINTON G E, et al. Gated softmax classification[C]. The 23rd International Conference on Neural Information Processing Systems, Red Hook, USA, 2010: 1603–1611.
    [17] LIN Min, CHEN Qiang, and YAN Shuicheng. Network in network[Z]. ArXiv: 1312.4400, 2013.
    [18] HU JIE, SHEN Li, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011–2023. doi: 10.1109/TPAMI.2019.2913372
    [19] BAS P, FILLER T, and TOMÁS PEVNÝ T. “Break Our Steganographic System”: The ins and outs of organizing BOSS[C]. Information Hiding 13th International Conference, Prague, Czech Republic, 2011: 59–70.
    [20] GLOROT X and BENGIO Y. Understanding the difficulty of training deep feedforward neural networks[J]. Journal of Machine Learning Research, 2010, 9: 249–256.
  • 加載中
圖(7) / 表(3)
計(jì)量
  • 文章訪問(wèn)數(shù):  868
  • HTML全文瀏覽量:  651
  • PDF下載量:  92
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2021-06-08
  • 修回日期:  2021-12-21
  • 錄用日期:  2021-12-27
  • 網(wǎng)絡(luò)出版日期:  2022-01-13
  • 刊出日期:  2022-08-17

目錄

    /

    返回文章
    返回