一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

免調(diào)度非正交多址接入上行鏈路的非2冪次長(zhǎng)度二元擴(kuò)頻序列

李玉博 王亞會(huì) 于麗欣 劉凱

李玉博, 王亞會(huì), 于麗欣, 劉凱. 免調(diào)度非正交多址接入上行鏈路的非2冪次長(zhǎng)度二元擴(kuò)頻序列[J]. 電子與信息學(xué)報(bào), 2022, 44(4): 1402-1411. doi: 10.11999/JEIT210293
引用本文: 李玉博, 王亞會(huì), 于麗欣, 劉凱. 免調(diào)度非正交多址接入上行鏈路的非2冪次長(zhǎng)度二元擴(kuò)頻序列[J]. 電子與信息學(xué)報(bào), 2022, 44(4): 1402-1411. doi: 10.11999/JEIT210293
LI Yubo, WANG Yahui, YU Lixin, LIU Kai. Binary Spreading Sequences of Lengths Non-Power-of-Two for Uplink Grant-Free Non-Orthogonal Multiple Access[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1402-1411. doi: 10.11999/JEIT210293
Citation: LI Yubo, WANG Yahui, YU Lixin, LIU Kai. Binary Spreading Sequences of Lengths Non-Power-of-Two for Uplink Grant-Free Non-Orthogonal Multiple Access[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1402-1411. doi: 10.11999/JEIT210293

免調(diào)度非正交多址接入上行鏈路的非2冪次長(zhǎng)度二元擴(kuò)頻序列

doi: 10.11999/JEIT210293
基金項(xiàng)目: 河北省自然科學(xué)基金(F2020203043, F2021203040),河北省高等學(xué)??茖W(xué)技術(shù)研究項(xiàng)目(ZD2020179, ZD2021105)
詳細(xì)信息
    作者簡(jiǎn)介:

    李玉博:男,1985年生,副教授,碩士生導(dǎo)師,研究方向?yàn)閴嚎s感知技術(shù),序列設(shè)計(jì)與編碼理論

    王亞會(huì):女,1999年生,碩士生,研究方向?yàn)槊庹{(diào)度NOMA擴(kuò)頻序列設(shè)計(jì)

    于麗欣:女,1998年生,碩士生,研究方向?yàn)閿U(kuò)頻序列設(shè)計(jì)

    劉凱:女,1977年生,副教授,碩士生導(dǎo)師,研究方向?yàn)閿U(kuò)頻序列設(shè)計(jì)

    通訊作者:

    李玉博 liyubo6316@ysu.edu.cn

  • 中圖分類號(hào): TN914.42

Binary Spreading Sequences of Lengths Non-Power-of-Two for Uplink Grant-Free Non-Orthogonal Multiple Access

Funds: The Natural Science Foundation of Hebei Province(F2020203043, F2021203040), The Science and Technology Research Project of Colleges and Universities in Hebei Province (ZD2020179, ZD2021105)
  • 摘要: 為了解決5G大規(guī)模機(jī)器類通信場(chǎng)景下大規(guī)模接入和如何提高頻譜效率的問(wèn)題,該文針對(duì)免調(diào)度非正交多址接入(NOMA)系統(tǒng)上行鏈路,通過(guò)采用插入函數(shù)在2元Golay序列上插入元素的方法,提出具有低峰均功率比(PAPR)且長(zhǎng)度為非2冪次的2元擴(kuò)頻序列集。仿真結(jié)果表明,得到的序列集具有低相干性,這為基于壓縮感知的活躍用戶檢測(cè)提供了可靠的性能。同傳統(tǒng)的Zadoff-Chu序列相比,新型2元序列集具有更小的字符集,便于實(shí)現(xiàn)。此外,所構(gòu)造的序列PAPR最大為4,低于高斯隨機(jī)序列和Zadoff-Chu序列,因此可以有效解決時(shí)域信號(hào)峰均功率比過(guò)高的問(wèn)題。
  • 圖  1  上行免調(diào)度NOMA的系統(tǒng)模型[21]

    圖  2  $ M{\text{ = }}129 $時(shí)(${M_{{\rm{zc}}}} = 127$)每個(gè)設(shè)備的SNR上的基于CS的CE和MUD的性能

    圖  3  $ M{\text{ = }}130 $時(shí)(${M_{{\rm{zc}}}} = 131$)每個(gè)設(shè)備的SNR上的基于CS的CE和MUD的性能

    圖  4  $ M{\text{ = }}129 $時(shí)(${M_{{\rm{zc}}}} = 127$)用戶過(guò)載因子L上的基于CS的CE和MUD的性能

    圖  5  $ M{\text{ = }}130 $時(shí)(${M_{{\rm{zc}}}} = 131$)用戶過(guò)載因子L上的基于CS的CE和MUD的性能

    圖  6  $ M{\text{ = }}129 $時(shí)(${M_{{\rm{zc}}}} = 127$)活躍概率Pa上的基于CS的CE和MUD的性能

    圖  7  $ M{\text{ = 130}} $時(shí)(${M_{{\rm{zc}}}} = 131$)活躍概率Pa上的基于CS的CE和MUD的性能

    表  1  使${{\boldsymbol{\varPhi}} '}$達(dá)到最優(yōu)的置換集

    $ {M'}{\text{ = }}{{\text{2}}^m} $用戶過(guò)載因子相干值置換集$\varGamma$
    32$ 2 \le L \le 8 $0.25$(5,4,3,2,1),(3,4,2,5,1),(4,2,5,3,1),(4,3,5,1,2),(4,5,1,3,2),(5,3,1,4,2),(5,4,2,1,3),(4,1,2,5,3)$
    64$ 2 \le L \le 5 $0.125$(3,4,5,2,6,1),(6,3,2,4,1,5),(4,1,6,5,2,3),(6,5,3,1,2,4),(5,3,2,1,6,4)$
    128$ 2 \le L \le 8 $0.125$\begin{array}{l} {\text{(4,5,1,3,6,7,2),(4,2,5,1,6,7,3),(6,7,1,2,3,5,4),(5,3,6,4,1,7,2),(6,4,7,3,1,5,2),(4,3,6,7,5,2,1),} } \\ {\text{(6,1,3,2,7,4,5),(6,7,5,1,4,3,2)} } \\ \end{array}$
    256$ 2 \le L \le 5 $0.0625${\text{(4,5,6,1,3,7,8,2),(7,6,8,2,3,1,4,5),(7,1,8,6,4,3,5,2),(6,7,2,3,8,4,1,5),(8,3,1,5,2,7,4,6)} }$
    512$ 2 \le L \le 8 $0.0625$\begin{array}{l} {\text{(8,3,7,4,9,2,5,1,6),(8,4,3,7,2,6,1,9,5),(9,5,4,1,6,8,3,7,2),(6,5,8,7,9,3,4,2,1),} } \\ {\text{(4,1,7,6,8,9,2,5,3),(4,8,2,6,9,7,5,3,1),(5,3,7,8,2,1,6,9,4),(5,6,9,3,7,1,8,2,4)} } \\ \end{array}$
    1024$ 2 \le L \le 5 $0.03125$\begin{array}{l} {\text{(9,1,6,3,2,8,5,4,10,7),(5,1,9,8,2,10,6,3,7,4),(6,3,8,10,9,7,1,5,4,2),(7,6,8,1,3,2,10,9,4,5),} } \\ {\text{(9,5,3,2,4,8,6,10,7,1)} } \\ \end{array}$
    下載: 導(dǎo)出CSV

    表  2  擴(kuò)頻矩陣相干值$\mu ({\boldsymbol{\varPhi}} )$

    擴(kuò)頻矩陣序列長(zhǎng)度$\mu ({\boldsymbol{\varPhi} } )$擴(kuò)頻矩陣序列長(zhǎng)度$\mu ({\boldsymbol{\varPhi} } )$擴(kuò)頻矩陣序列長(zhǎng)度$\mu ({\boldsymbol{\varPhi } })$擴(kuò)頻矩陣序列長(zhǎng)度$\mu ({\boldsymbol{\varPhi } })$
    本文330.2727本文340.2941文獻(xiàn)[16]320.2500基于ZC序列310.1796
    650.1385660.1515640.1250610.1280
    1290.13181300.13851280.12501270.0887
    2570.06612580.06982560.06252570.0624
    5130.06435140.06615120.06255090.0443
    10250.032210260.033110240.0312510210.0313
    下載: 導(dǎo)出CSV

    表  3  擴(kuò)頻矩陣?yán)镄蛄械淖畲驪APR

    擴(kuò)頻矩陣序列長(zhǎng)度PAPR擴(kuò)頻矩陣序列長(zhǎng)度PAPR擴(kuò)頻矩陣序列長(zhǎng)度PAPR擴(kuò)頻矩陣序列長(zhǎng)度PAPR
    本文332.4545本文342.9412文獻(xiàn)[16]322.0000基于ZC序列314.4066
    652.2825662.6172641.9928614.0922
    1292.24031302.49231282.00001274.3376
    2572.16992582.32652561.99782574.7396
    5132.12285142.24905122.00005094.8785
    10252.083410262.171310241.999310215.2751
    下載: 導(dǎo)出CSV

    表  4  幾種確定性擴(kuò)頻矩陣的參數(shù)

    擴(kuò)頻矩陣擴(kuò)頻序列長(zhǎng)度$ M $$\mu ({\boldsymbol{\varPhi} } )$PAPR上界字符集大小
    文獻(xiàn)[16]$ {2^m} $$\sqrt{{1}/{ {2}^{m\text{-1} } } },\;\;m{\text{為奇數(shù)} }$
    $\sqrt{{1}/{ {2}^{m} } },\;m{\text{為偶數(shù)} }$
    22
    基于ZC序列$ {M_{{\text{zc}}}} $為任意素?cái)?shù)$\sqrt {{1}/{ { {M_{ {\text{zc} } } } } } }$>4$ {M_{{\text{zc}}}} $
    本文$ {2^m}{\text{ + }}1 $$\dfrac{\sqrt{ {2}^{m+1} }+1}{ {2}^{m}+1},\;m{\text{為奇數(shù)} }$
    $\dfrac{\sqrt{ {2}^{m} }+1}{ {2}^{m}+1},\;m{\text{為偶數(shù)} }$
    42
    本文$ {2^m}{\text{ + 2}} $$ \dfrac{\sqrt{{2}^{m+1}}+2}{{2}^{m}+2},m{\text{為奇數(shù)}} $,$ \dfrac{\sqrt{{2}^{m}}+2}{{2}^{m}+2},m{\text{為偶數(shù)}} $42
    下載: 導(dǎo)出CSV
  • [1] 戴維佳. mMTC非正交多址接入中的活躍用戶檢測(cè)和信道估計(jì)[D]. [碩士論文], 中國(guó)科學(xué)技術(shù)大學(xué), 2019.

    DAI Weijia. Active user detection and channel estimation in Non-orthogonal multiple access of mMTC[D]. [Master dissertation], University of Science and Technology of China, 2019.
    [2] 王茜竹, 方冬, 吳廣富. 基于改進(jìn)稀疏度自適應(yīng)匹配算法的免授權(quán)非正交多址接入上行傳輸多用戶檢測(cè)[J]. 電子與信息學(xué)報(bào), 2020, 42(9): 2216–2222. doi: 10.11999/JEIT190505

    WANG Qianzhu, FANG Dong, and WU Guangfu. Multi-user detection based on sparsity adaptive matching pursuit compressive sensing for uplink grant-free non-orthogonal multiple access[J]. Journal of Electronics &Information Technology, 2020, 42(9): 2216–2222. doi: 10.11999/JEIT190505
    [3] TALEB T and KUNZ A. Machine type communications in 3GPP networks: Potential, challenges, and solutions[J]. IEEE Communications Magazine, 2012, 50(3): 178–184. doi: 10.1109/MCOM.2012.6163599
    [4] SHAHAB M B, ABBAS R, SHIRVANIMOGHADDAM M, et al. Grant-free non-orthogonal multiple access for IoT: A survey[J]. IEEE Communications Surveys & Tutorials, 2020, 22(3): 1805–1838. doi: 10.1109/COMST.2020.2996032
    [5] 戴維佳, 李樂(lè)天, 周武旸. 基于期望傳播的活躍用戶檢測(cè)和信道估計(jì)[J]. 中國(guó)科學(xué)技術(shù)大學(xué)學(xué)報(bào), 2019, 49(10): 797–804, 819. doi: 10.3969/j.issn.0253-2778.2019.10.004

    DAI Weijia, LI Letian, and ZHOU Wuyang. Active user detection and channel estimation based on expectation propagation[J]. Journal of University of Science and Technology of China, 2019, 49(10): 797–804, 819. doi: 10.3969/j.issn.0253-2778.2019.10.004
    [6] DING Zhiguo, LEI Xianfu, KARAGIANNIDIS G K, et al. A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(10): 2181–2195. doi: 10.1109/JSAC.2017.2725519
    [7] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582
    [8] CAI Donghong, WEN Jinming, FAN Pingzhi, et al. Active user and data detection for uplink grant-free NOMA systems[J]. China Communications, 2020, 17(11): 12–28. doi: 10.23919/JCC.2020.11.002
    [9] HOSOKAWA S, TEO K, OHNO S, et al. Pilot tone design with low peak-to-average power ratio in OFDM[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2005, E88-A(8): 2117–2123. doi: 10.1093/ietfec/e88-a.8.2117
    [10] LIU Liang, LARSSON E G, YU Wei, et al. Sparse signal processing for grant-free massive connectivity: A future paradigm for random access protocols in the internet of things[J]. IEEE Signal Processing Magazine, 2018, 35(5): 88–99. doi: 10.1109/MSP.2018.2844952
    [11] CHEN Huan, FAN Pingzhi, and LI Li. Active users detection based on deterministic sequences for massive connectivity[C]. 2019 Ninth International Workshop on Signal Design and its Applications in Communications (IWSDA), Dongguan, China, 2019: 1–5. doi: 10.1109/IWSDA46143.2019.8966106.
    [12] YANG K, KIM Y K, and KUMAR P V. Quasi-orthogonal sequences for code-division multiple-access systems[J]. IEEE Transactions on Information Theory, 2000, 46(3): 982–993. doi: 10.1109/18.841175
    [13] WEN Yang, HUANG Wei, and ZHANG Zhongpei. CAZAC sequence and its application in LTE random access[C]. 2006 IEEE Information Theory Workshop - ITW '06 Chengdu, Chengdu, China, 2006: 544–547. doi: 10.1109/ITW2.2006.323692.
    [14] LI Zhen, SUN Teng, LU Guangyue, et al. Preamble design and detection for 5G enabled satellite random access[J]. IEEE Access, 2020, 8: 49873–49884. doi: 10.1109/ACCESS.2020.2979871
    [15] PITAVAL R A, POPOVI?B M, WANG Peng, et al. Overcoming 5G PRACH capacity shortfall: Supersets of Zadoff–Chu sequences with low-correlation zone[J]. IEEE Transactions on Communications, 2020, 68(9): 5673–5688. doi: 10.1109/TCOMM.2020.3003664
    [16] YU N Y. Binary Golay spreading sequences and reed-Muller codes for uplink grant-free NOMA[J]. IEEE Transactions on Communications, 2021, 69(1): 276–290. doi: 10.1109/TCOMM.2020.3031613
    [17] ADHIKARY A R and MAJHI S. New constructions of complementary sets of sequences of lengths non-power-of-two[J]. IEEE Communications Letters, 2019, 23(7): 1119–1122. doi: 10.1109/LCOMM.2019.2913382
    [18] LIU Zilong, PARAMPALLI U, and GUAN Yongliang, et al. Optimal odd-length binary Z-complementary pairs[J]. IEEE Transactions on Information Theory, 2014, 60(9): 5768–5781. doi: 10.1109/TIT.2014.2335731
    [19] ADHIKARY A R, MAJHI S, LIU Zilong, et al. New sets of even-length binary Z-complementary pairs with asymptotic ZCZ ratio of 3/4[J]. IEEE Signal Processing Letters, 2018, 25(7): 970–973. doi: 10.1109/LSP.2018.2834143
    [20] DAVIS J A and JEDWAB J. Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes[J]. IEEE Transactions on Information Theory, 1999, 45(7): 2397–2417. doi: 10.1109/18.796380
    [21] AHN J, SHIM B, and LEE K B. EP-based joint active user detection and channel estimation for massive machine-type communications[J]. IEEE Transactions on Communications, 2019, 67(7): 5178–5189. doi: 10.1109/TCOMM.2019.2907853
    [22] 3GPP. 3GPP TS-36.211 V13. 2.0 3rd Generation partnership project; technical specification group radio access network; Evolved Universal Terrestrial Radio Access (E-UTRA); physical channels and modulation[S]. France: 3GPP, 2016.
    [23] WANG Bichai, DAI Linglong, MIR T, et al. Joint user activity and data detection based on structured compressive sensing for NOMA[J]. IEEE Communications Letters, 2016, 20(7): 1473–1476. doi: 10.1109/LCOMM.2016.2560180
    [24] DU Yang, DONG Binhong, ZHU Wuyong, et al. Joint channel estimation and multiuser detection for uplink grant-free NOMA[J]. IEEE Wireless Communications Letters, 2018, 7(4): 682–685. doi: 10.1109/LWC.2018.2810278
    [25] TROPP J A, GILBERT A C, and STRAUSS M J. Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit[J]. Signal Processing, 2006, 86(3): 572–588. doi: 10.1016/j.sigpro.2005.05.030
  • 加載中
圖(7) / 表(4)
計(jì)量
  • 文章訪問(wèn)數(shù):  1344
  • HTML全文瀏覽量:  532
  • PDF下載量:  107
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2021-04-09
  • 修回日期:  2021-08-24
  • 網(wǎng)絡(luò)出版日期:  2021-09-08
  • 刊出日期:  2022-04-18

目錄

    /

    返回文章
    返回