一種Sc2O3摻雜Y-Gd-Hf-O壓制式直熱式陰極發(fā)射特性研究
doi: 10.11999/JEIT210111
-
1.
中國科學院空天信息創(chuàng)新研究院 北京 100190
-
2.
九江學院電子工程學院 九江 332005
-
3.
中國科學院大學 北京 100049
Investigation on Thermionic Emission Characteristics of Pressed Sc2O3 Doped Y-Gd-Hf-O Directly-heated Cathode
-
1.
Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
-
2.
School of Electronic Engineering, Jiujiang University, Jiujiang 332005, China
-
3.
University of Chinese Academy of Sciences, Beijing 100049, China
-
摘要: 為了提高Y-Gd-Hf-O陰極耐電子轟擊能力,該文通過高能球磨、壓制和高溫氫氣燒結,制備了一種Sc2O3摻雜Y-Gd-Hf-O壓制式直熱式陰極。該陰極在1550 °C工作溫度下,經過10 W電子連續(xù)轟擊480 h后,發(fā)射電流密度下降至初始值的87.5%,表現(xiàn)出良好的耐電子轟擊能力。陰極表面的微觀形貌、成分組成分析表明,經壓制后氫氣氣氛燒結,陰極表面呈陶瓷狀結構形態(tài),有利于提高陰極的耐電子轟擊能力;經高溫燒結、激活后表面形成了n型半導體Y2O3-x層,對改善陰極表面導電性、降低逸出功和提高熱發(fā)射有促進作用。Abstract: To improve the Y-Gd-Hf-O cathodes anti-electron bombardment ability, a scandia doped cathode is prepared by a pressing technique combined with sintering in hydrogen atmosphere. The tested result shows that the emitting current from the cathode operating at 1550 °C can remain to 87.5% of the initial one after continuous electron bombardment of 10 W for 480 h, reflecting a better anti-electron bombardment capability. The surface microstructure analysis result indicates that a cermet structure has been formed. A n-type semiconductor Y2O3-x layer has generated on the cathode surface after being sintered and activated at high temperature, which is favorable for enhancing the thermionic emission, improving the surface conductivity, and lowering the work function.
-
Key words:
- Cathode thermionic emission /
- Magnetron /
- Work function /
- Anti-bombing
-
表 1 陰極氫爐燒結前后EDS原子含量(%)
元素 燒結前 燒結后 區(qū)域A 區(qū)域B 區(qū)域A 區(qū)域B Y 24.08 24.39 23.23 23.99 Gd 3.22 2.94 2.96 2.95 Hf 14.51 14.46 14.80 15.38 Sc 5.08 5.07 5.44 5.36 O 53.11 53.13 53.57 52.32 下載: 導出CSV
-
[1] ZHANG Xiaoke, HUA Yazhou, WANG Jinshu, et al. Studies of the influence of ZrH2 addition to the impregnant on the performance of yttrium oxide–tungsten matrix Ba dispenser cathodes[J]. IEEE Transactions on Electron Devices, 2021, 68(2): 829–834. doi: 10.1109/TED.2020.3045385 [2] WANG Xiaoxia, WANG Xingqi, ZHAO Qinglan, et al. Research progress in new types of thermionic cathodes[C]. 13th IVESC, Bad Honnef, Germany, 2020: 18. [3] ROQUAIS J M and WIERSCHKE D J. Oxide cathode for electron gun with a differentially doped metallic substrate[P]. USA Patent, 522115, 2006. [4] GALLAGHER H E and KNAUER W. Thermionic emission cathode having reduced frontal area and enlarged emission area for ion bombardment environment[P]. USA Patent, 3439210DA, 1969. [5] KIRKWOOD D M, GROSS S J, BALK T J, et al. Frontiers in thermionic cathode research[J]. IEEE Transactions on Electron Devices, 2018, 65(6): 2061–2071. doi: 10.1109/TED.2018.2804484 [6] 畢建明. W-Y2O3金屬陶瓷陰極的二次發(fā)射[J]. 電子與信息學報, 1982, 4(2): 132–136.BI Jianming. Some secondary emission properties of W-Y2O3 cermet cathode[J]. Journal of Electronics &Information Technology, 1982, 4(2): 132–136. [7] 朱程, 楊金生, 李會成, 等. 30 kW連續(xù)波磁控管的研制[J]. 真空電子技術, 2013(5): 110–111. doi: 10.3969/j.issn.1002-8935.2013.05.030ZHU Cheng, YANG Jinsheng, LI Huicheng, et al. Development of 30 kW continuous wave magnetron[J]. Vacuum Electronics, 2013(5): 110–111. doi: 10.3969/j.issn.1002-8935.2013.05.030 [8] 孫陵斌. 2 kW連續(xù)波磁控管陰極壽命的研究[J]. 真空電子技術, 2020(2): 51–53. doi: 10.16540/j.cnki.cn11-2485/tn.2020.02.12SUN Lingbin. Study on cathode lifetime of a 2 kW continuous wave magnetron[J]. Vacuum Electronics, 2020(2): 51–53. doi: 10.16540/j.cnki.cn11-2485/tn.2020.02.12 [9] WANG Jinshu, ZHOU Meiling, MA Shuyun, et al. A study on the anti-electron-bombing life of La2O3–Y2O3–Mo cermet cathode materials[J]. Journal of Alloys and Compounds, 2006, 419(1/2): 172–175. doi: 10.1016/j.jallcom.2005.06.086 [10] 漆世鍇, 王小霞, 羅積潤, 等. Y2O3-Gd2O3-HfO2摻雜W基直熱式陰極的熱發(fā)射及耐電子轟擊特性[J]. 稀有金屬材料與工程, 2018, 47(12): 3784–3788.QI Shikai, WANG Xiaoxia, LUO Jirun, et al. Thermionic emission and anti-electron-bombing characteristics of the Y2O3-Gd2O3-HfO2 doped W base direct-heated cathode[J]. Rare Metal Materials and Engineering, 2018, 47(12): 3784–3788. [11] 蔣鵬宇, 王小霞, 羅積潤, 等. Y2O3-Gd2O3-HfO2浸漬W基直熱式陰極次級電子發(fā)射的測試[J]. 微波學報, 2017, 33(S1): 250–253.JIANG Pengyu, WANG Xiaoxia, LUO Jirun, et al. Secondary electron emission of Y2O3-Gd2O3-HfO2 impregnated W base directly-heated cathode[J]. Journal of Microwaves, 2017, 33(S1): 250–253. [12] 陳曉倩, 王小霞, 張兆傳, 等. Sc2O3摻雜對Y2O3-Gd2O3-HfO2難熔稀土氧化物直熱式陰極熱發(fā)射性能的影響[J]. 真空科學與技術學報, 2019, 39(2): 131–135. doi: 10.13922/j.cnki.cjovst.2019.02.07CHEN Xiaoqian, WANG Xiaoxia, ZHANG Zhaochuan, et al. Effect of Sc2O3-doping on thermal emission properties of Y2O3-Gd2O3-HfO2 thermal cathode[J]. Chinese Journal of Vacuum Science and Technology, 2019, 39(2): 131–135. doi: 10.13922/j.cnki.cjovst.2019.02.07 [13] 郭艷群, 聶祚仁, 席曉麗, 等. 鎢熱電子發(fā)射材料的研究進展[J]. 稀有金屬, 2005, 29(2): 200–205. doi: 10.3969/j.issn.0258-7076.2005.02.016GUO Yanqun, NIE Zuoren, XI Xiaoli, et al. Advances in research on tungsten cathode materials[J]. Chinese Journal of Rare Metals, 2005, 29(2): 200–205. doi: 10.3969/j.issn.0258-7076.2005.02.016 [14] 漆世鍇, 王小霞, 王興起, 等. 大功率磁控管用新型Y2Hf2O7陶瓷陰極研究[J]. 物理學報, 2020, 69(3): 037901. doi: 10.7498/aps.69.20191496QI Shikai, WANG Xiaoxia, WANG Xingqi, et al. A novel Y2Hf2O7 ceramic cathode applied to high power magnetron tube[J]. Acta Physica Sinica, 2020, 69(3): 037901. doi: 10.7498/aps.69.20191496 [15] CUI Yuntao, WANG Jinshu, LIU Wei, et al. Effect of Scandia on tungsten oxide powder reduction process[J]. Journal of Rare Earths, 2010, 28(S1): 202–205. doi: 10.1016/S1002-0721(10)60274-8 [16] 賴陳, 王金淑, 周帆, 等. 新型鎢錸混合基陰極的熱電子發(fā)射性能[J]. 稀有金屬材料與工程, 2016, 45(7): 1871–1875.LAI Chen, WANG Jinshu, ZHOU Fan, et al. Thermal electron emission properties of novel W-Re mixed matrix cathodes[J]. Rare Metal Materials and Engineering, 2016, 45(7): 1871–1875. -