基于目標(biāo)容量的網(wǎng)絡(luò)化雷達(dá)功率分配方案
doi: 10.11999/JEIT200873
-
西安電子科技大學(xué)雷達(dá)信號處理國家重點(diǎn)實(shí)驗(yàn)室 西安 710071
基金項(xiàng)目: 國家自然科學(xué)基金(62071345),國家杰出青年科學(xué)基金(61525105),高等學(xué)校學(xué)科創(chuàng)新引智計(jì)劃(111 project, B18039),陜西省自然科學(xué)基金(2020JQ-297),中國航空科學(xué)基金(201920081002),雷達(dá)信號處理國家重點(diǎn)實(shí)驗(yàn)室基金(61424010406)
Target Capacity Based Power Allocation Scheme in Radar Network
-
National Laboratory of Radar Signal Processing, Xidian University, Xi’an 710071, China
Funds: The National Natural Science Foundation of China (62071345), The National Science Fund for Distinguished Yong Scholars (61525105), The Fund for Foreign Scholars in University Research and Teaching Programs (111 project, B18039), The Natural Science Foundation of Shaanxi Province (2020JQ-297), The Aeronautical Science Foundation of China (201920081002), The Foundation of National Radar Signal Processing Laboratory (61424010406)
-
摘要: 針對現(xiàn)有網(wǎng)絡(luò)化雷達(dá)功率資源利用率低的問題,該文提出一種基于目標(biāo)容量的功率分配(TC-PA)方案以提升保精度跟蹤目標(biāo)個(gè)數(shù)。TC-PA方案首先將網(wǎng)絡(luò)化雷達(dá)功率分配模型制定為非光滑非凸優(yōu)化問題;而后引入Sigmoid函數(shù)將原問題松弛為光滑非凸優(yōu)化問題;最后運(yùn)用近端非精確增廣拉格朗日乘子法(PI-ALMM)對松弛后的非凸問題進(jìn)行求解。仿真結(jié)果表明,PI-ALMM對于求解線性約束非凸優(yōu)化問題可以較快地收斂到一個(gè)穩(wěn)態(tài)點(diǎn)。另外,相比傳統(tǒng)功率均分方法和遺傳算法,所提TC-PA方案可以最大限度地提升目標(biāo)容量。
-
關(guān)鍵詞:
- 網(wǎng)絡(luò)化雷達(dá) /
- 多目標(biāo)跟蹤 /
- 資源分配 /
- 非凸優(yōu)化
Abstract: In view of the fact that low power resource utilization rate exists in radar network, a Target Capacity based Power Allocation (TC-PA) scheme is proposed to increase the number of the targets that satisfy tracking accuracy requirements. Firstly, this scheme formulates the power allocation model of radar network as a non-smooth and non-convex optimization problem. Then the original problem is relaxed into a smooth and non-convex problem through introducing Sigmoid function. Finally, the relaxed non-convex problem is solved by utilizing the Proximal Inexact Augmented Lagrangian Multiplier Method (PI-ALMM). Simulation results show that the PI-ALMM can quickly converge to a stationary point for solving the non-convex optimization problem with linear constraints. Moreover, the proposed TC-PA scheme outperforms the traditional uniform power allocation method and genetic algorithm, in terms of target capacity.-
Key words:
- Radar network /
- Multiple target tracking /
- Resource allocation /
- Non-convex optimization
-
表 1 PI-ALMM求解流程
(1) 初始化參數(shù)$\rho > 0$,$\alpha > 0$, $0 < c \le {1 / {\bar L}}$, $\ell > - \tau $, $0 < \beta \le 1$,及迭代下標(biāo)$j = 0$; (2) 初始化變量${\boldsymbol{p}}_{q,k}^j{\rm{ = }}{\left( {{{{{p}}_{{\rm{total}}}^1} / {Q{{,{{p}}_{{\rm{total}}}^2} / Q}{{, ··· ,{{p}}_{{\rm{total}}}^N} / Q}}}} \right)^{\rm{T}}}$, 令${\boldsymbol{p}}_k^j = \left( {{\boldsymbol{p}}_{1,k}^j;{\boldsymbol{p}}_{2,k}^j; ··· ;{\boldsymbol{p}}_{Q,k}^j} \right)$, ${\boldsymbol}_k^j{\rm{ = }}{\boldsymbol{p}}_k^j$及${\boldsymbol{a} }_k^j{\rm{ = } }{ {{{\textit{0}}} }_{N \times 1} }$; (3) 計(jì)算$L\left( {{{\boldsymbol{p}}_k},{{\boldsymbol}_k};{{\boldsymbol{a}}_k}} \right)$關(guān)于${{\boldsymbol{p}}_k}$的梯度 $\begin{array}{l} { {\text{?} }_{ { {\boldsymbol{p} }_k} } }L\left( { { {\boldsymbol{p} }_k},{ {\boldsymbol }_k};{ {\boldsymbol{a} }_k} } \right) = { {\nabla }_{ { {\boldsymbol{p} }_k} } }f\left( { { {\boldsymbol{p} }_k} } \right) + { {\boldsymbol{A} }^{\rm{T} } }{ {\boldsymbol{a} }_k} + \rho { {\boldsymbol{A} }^{\rm{T} } } \\ \begin{array}{*{20}{c} } {}&{}&{} \end{array}\left( { {\boldsymbol{A} }{ {\boldsymbol{p} }_k} - { {\boldsymbol{p} }_{ {\rm{total} } } } } \right) + \ell \left( { { {\boldsymbol{p} }_k} - { {\boldsymbol }_k} } \right) \end{array}d{array}$; (4) 循環(huán) (a) ${\boldsymbol{a}}_k^{j + 1} = {\boldsymbol{a}}_k^j + \alpha \left( {A{\boldsymbol{p}}_k^j - {{\boldsymbol{p}}_{{\rm{total}}}}} \right)$; (b) ${\boldsymbol{p} }_k^{j + 1} = {\left[ { {\boldsymbol{p} }_k^j - c \cdot { \nabla_{ {\boldsymbol{p} }_k^j} }L\left( { {\boldsymbol{p} }_k^j,{\boldsymbol }_k^j;{\boldsymbol{a} }_k^{j + 1} } \right)} \right]_ + }$; (c) ${\boldsymbol}_k^{j + 1} = {\boldsymbol}_k^j + \beta \left( {{\boldsymbol{p}}_k^{j + 1} - {\boldsymbol}_k^j} \right)$; (d) $j = j + 1$; (5) 直到$\left| {f\left( {{\boldsymbol{p}}_k^j} \right) - f\left( {{\boldsymbol{p}}_k^{j - 1}} \right)} \right| \le \varepsilon $($\varepsilon $為給定算法終止門限),退
出循環(huán),令功率分配結(jié)果${\boldsymbol{p}}_k^{{\rm{opt}}} = {\boldsymbol{p}}_k^j$。下載: 導(dǎo)出CSV
-
[1] GRECO M S, GINI F, STINCO P, et al. Cognitive radars: On the road to reality: Progress thus far and possibilities for the future[J]. IEEE Signal Processing Magazine, 2018, 35(4): 112–125. doi: 10.1109/MSP.2018.2822847 [2] 王祥麗, 易偉, 孔令講. 基于多目標(biāo)跟蹤的相控陣?yán)走_(dá)波束和駐留時(shí)間聯(lián)合分配方法[J]. 雷達(dá)學(xué)報(bào), 2017, 6(6): 602–610. doi: 10.12000/JR17045WANG Xiangli, YI Wei, and KONG Lingjiang. Joint beam selection and dwell time allocation for multi-target tracking in phased array radar system[J]. Journal of Radars, 2017, 6(6): 602–610. doi: 10.12000/JR17045 [3] 嚴(yán)俊坤, 劉宏偉, 戴奉周, 等. 基于非線性機(jī)會約束規(guī)劃的多基雷達(dá)系統(tǒng)穩(wěn)健功率分配算法[J]. 電子與信息學(xué)報(bào), 2014, 36(3): 509–515. doi: 10.3724/SP.J.1146.2013.00656YAN Junkun, LIU Hongwei, DAI Fengzhou, et al. Nonlinear chance constrained programming based robust power allocation algorithm for multistatic radar systems[J]. Journal of Electronics &Information Technology, 2014, 36(3): 509–515. doi: 10.3724/SP.J.1146.2013.00656 [4] SHI Chenguang, DING Lintao, WANG Fei, et al. Low probability of intercept-based collaborative power and bandwidth allocation strategy for multi-target tracking in distributed radar network system[J]. IEEE Sensors Journal, 2020, 20(12): 6367–6377. doi: 10.1109/JSEN.2020.2977328 [5] YAN Junkun, DAI Jinhui, PU Wenqiang, et al. Quality of service constrained-resource allocation scheme for multiple target tracking in radar sensor network[J]. IEEE Systems Journal, 2021, 15(1): 771–779. doi: 10.1109/JSYST.2020.2990409 [6] YAN Junkun, PU Wenqiang, ZHOU Shenghua, et al. Optimal resource allocation for asynchronous multiple targets tracking in heterogeneous radar networks[J]. IEEE Transactions on Signal Processing, 2020, 68: 4055–4068. doi: 10.1109/TSP.2020.3007313 [7] XIE Mingchi, YI Wei, KONG Lingjiang, et al. Receive-beam resource allocation for multiple target tracking with distributed MIMO radars[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(5): 2421–2436. doi: 10.1109/TAES.2018.2818579 [8] XIE Mingchi, YI Wei, KIRUBARAJAN T, et al. Joint node selection and power allocation strategy for multitarget tracking in decentralized radar networks[J]. IEEE Transactions on Signal Processing, 2018, 66(3): 729–743. doi: 10.1109/TSP.2017.2777394 [9] YI Wei, YUAN Ye, HOSEINNEZHAD H, et al. Resource scheduling for distributed multi-target tracking in netted colocated MIMO radar systems[J]. IEEE Transactions on Signal Processing, 2020, 68: 1602–1617. doi: 10.1109/TSP.2020.2976587 [10] ZHANG Haowei, LIU Weijian, XIE Junwei, et al. Joint subarray selection and power allocation for cognitive target tracking in large-scale MIMO radar networks[J]. IEEE Systems Journal, 2020, 14(2): 2569–2580. doi: 10.1109/JSYST.2019.2960401 [11] 嚴(yán)俊坤, 糾博, 劉宏偉, 等. 一種針對多目標(biāo)跟蹤的多基雷達(dá)系統(tǒng)聚類與功率聯(lián)合分配算法[J]. 電子與信息學(xué)報(bào), 2013, 35(8): 1875–1881. doi: 10.3724/SP.J.1146.2012.01470YAN Junkun, JIU Bo, LIU Hongwei, et al. Joint cluster and power allocation algorithm for multiple targets tracking in multistatic radar systems[J]. Journal of Electronics &Information Technology, 2013, 35(8): 1875–1881. doi: 10.3724/SP.J.1146.2012.01470 [12] YAN Junkun, PU Wenqiang, ZHOU Shenghua, et al. Collaborative detection and power allocation framework for target tracking in multiple radar system[J]. Information Fusion, 2020, 55: 173–183. doi: 10.1016/j.inffus.2019.08.010 [13] 秦童, 戴奉周, 劉宏偉, 等. 火控相控陣?yán)走_(dá)的時(shí)間資源管理算法[J]. 系統(tǒng)工程與電子技術(shù), 2016, 38(3): 545–550. doi: 10.3969/j.issn.1001-506X.2016.03.11QING Tong, DAI Fengzhou, LIU Hongwei, et al. Time resource management algorithm for the fire control phased-array radar[J]. Systems Engineering and Electronics, 2016, 38(3): 545–550. doi: 10.3969/j.issn.1001-506X.2016.03.11 [14] YAN Junkun, ZHANG Peng, DAI Jinhui, et al. Target capacity based simultaneous multibeam power allocation scheme for multiple target tracking application[J]. Signal Processing, 2021, 178: 107794. doi: 10.1016/j.sigpro.2020.107794 [15] GURBUZ A C, MDRAFI R, and CETINER B A. Cognitive radar target detection and tracking with multifunctional reconfigurable antennas[J]. IEEE Aerospace and Electronic Systems Magazine, 2020, 35(6): 64–76. doi: 10.1109/MAES.2020.2990589 [16] NEITZ O and EIBERT T F. A plane-wave synthesis approach for 3D monostatic RCS prediction from near-field measurements[C]. 2018 15th European Radar Conference, Madrid, Spain, 2018: 99–102. doi: 10.23919/EuRAD.2018.8546622. [17] SONG Wanjun and ZHANG Hou. RCS prediction of objects coated by magnetized plasma via scale model with FDTD[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(6): 1939–1945. doi: 10.1109/TMTT.2016.2645567 [18] TICHAVSKY P, MURAVCHIK C H, and NEHORAI A. Posterior Cramer-Rao bounds for discrete-time nonlinear filtering[J]. IEEE Transactions on Signal Processing, 1998, 46(5): 1386–1396. doi: 10.1109/78.668800 [19] ILIEV A, KYURKCHIEV N, MARKOV S. On the approximation of the step function by some sigmoid functions[J]. Mathematics and Computers in Simulation, 2017, 133: 223–234. doi: 10.1016/j.matcom.2015.11.005 [20] GARULLI A and VICINO A. Convex relaxations in circuits, systems, and control[J]. IEEE Circuits and Systems Magazine, 2009, 9(2): 46–56. doi: 10.1109/MCAS.2008.931737 [21] ZHANG Jiawei and LUO Zhiquan. A proximal alternating direction method of multiplier for linearly constrained nonconvex minimization[J]. SIAM Journal on Optimization, 2020, 30(3): 2272–2302. doi: 10.1137/19M1242276 [22] ZHANG Jiawei and LUO Zhiquan. A global dual error bound and its application to the analysis of linearly constrained nonconvex optimization[J]. arXiv preprint arXiv: 2006.16440, 2020. [23] GREFENSTETTE J J. Optimization of control parameters for genetic algorithms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1986, 16(1): 122–128. doi: 10.1109/TSMC.1986.289288 -