一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于目標(biāo)容量的網(wǎng)絡(luò)化雷達(dá)功率分配方案

戴金輝 嚴(yán)俊坤 王鵬輝 劉宏偉

戴金輝, 嚴(yán)俊坤, 王鵬輝, 劉宏偉. 基于目標(biāo)容量的網(wǎng)絡(luò)化雷達(dá)功率分配方案[J]. 電子與信息學(xué)報(bào), 2021, 43(9): 2688-2694. doi: 10.11999/JEIT200873
引用本文: 戴金輝, 嚴(yán)俊坤, 王鵬輝, 劉宏偉. 基于目標(biāo)容量的網(wǎng)絡(luò)化雷達(dá)功率分配方案[J]. 電子與信息學(xué)報(bào), 2021, 43(9): 2688-2694. doi: 10.11999/JEIT200873
Jinhui DAI, Junkun YAN, Penghui WANG, Hongwei LIU. Target Capacity Based Power Allocation Scheme in Radar Network[J]. Journal of Electronics & Information Technology, 2021, 43(9): 2688-2694. doi: 10.11999/JEIT200873
Citation: Jinhui DAI, Junkun YAN, Penghui WANG, Hongwei LIU. Target Capacity Based Power Allocation Scheme in Radar Network[J]. Journal of Electronics & Information Technology, 2021, 43(9): 2688-2694. doi: 10.11999/JEIT200873

基于目標(biāo)容量的網(wǎng)絡(luò)化雷達(dá)功率分配方案

doi: 10.11999/JEIT200873
基金項(xiàng)目: 國家自然科學(xué)基金(62071345),國家杰出青年科學(xué)基金(61525105),高等學(xué)校學(xué)科創(chuàng)新引智計(jì)劃(111 project, B18039),陜西省自然科學(xué)基金(2020JQ-297),中國航空科學(xué)基金(201920081002),雷達(dá)信號處理國家重點(diǎn)實(shí)驗(yàn)室基金(61424010406)
詳細(xì)信息
    作者簡介:

    戴金輝:男,1993年生,博士生,研究方向?yàn)榫W(wǎng)絡(luò)化雷達(dá)資源分配、目標(biāo)跟蹤

    嚴(yán)俊坤:男,1987年生,副教授,博士生導(dǎo)師,研究方向?yàn)檎J(rèn)知雷達(dá)、目標(biāo)跟蹤與定位、協(xié)同探測等

    王鵬輝:男,1984年生,副教授,碩士生導(dǎo)師,研究方向?yàn)槔走_(dá)自動目標(biāo)識別、機(jī)器學(xué)習(xí)與模式識別等

    劉宏偉:男,1971年生,教授,博士生導(dǎo)師,研究方向?yàn)榫W(wǎng)絡(luò)化雷達(dá)、寬帶雷達(dá)信號處理、雷達(dá)自動目標(biāo)識別、自適應(yīng)和陣列信號處理及目標(biāo)檢測等

    通訊作者:

    嚴(yán)俊坤 jkyan@xidian.edu.cn

  • 中圖分類號: TN958

Target Capacity Based Power Allocation Scheme in Radar Network

Funds: The National Natural Science Foundation of China (62071345), The National Science Fund for Distinguished Yong Scholars (61525105), The Fund for Foreign Scholars in University Research and Teaching Programs (111 project, B18039), The Natural Science Foundation of Shaanxi Province (2020JQ-297), The Aeronautical Science Foundation of China (201920081002), The Foundation of National Radar Signal Processing Laboratory (61424010406)
  • 摘要: 針對現(xiàn)有網(wǎng)絡(luò)化雷達(dá)功率資源利用率低的問題,該文提出一種基于目標(biāo)容量的功率分配(TC-PA)方案以提升保精度跟蹤目標(biāo)個(gè)數(shù)。TC-PA方案首先將網(wǎng)絡(luò)化雷達(dá)功率分配模型制定為非光滑非凸優(yōu)化問題;而后引入Sigmoid函數(shù)將原問題松弛為光滑非凸優(yōu)化問題;最后運(yùn)用近端非精確增廣拉格朗日乘子法(PI-ALMM)對松弛后的非凸問題進(jìn)行求解。仿真結(jié)果表明,PI-ALMM對于求解線性約束非凸優(yōu)化問題可以較快地收斂到一個(gè)穩(wěn)態(tài)點(diǎn)。另外,相比傳統(tǒng)功率均分方法和遺傳算法,所提TC-PA方案可以最大限度地提升目標(biāo)容量。
  • 圖  1  節(jié)點(diǎn)和目標(biāo)的空間位置分布

    圖  2  多目標(biāo)跟蹤精度閾值

    圖  3  不同方法的目標(biāo)容量

    圖  4  均勻分配和PI-ALMM滿足跟蹤精度的目標(biāo)下標(biāo)

    圖  5  采用PI-ALMM各節(jié)點(diǎn)功率分配結(jié)果

    圖  6  目標(biāo)函數(shù)值與迭代次數(shù)的關(guān)系

    圖  7  $\phi _k^j$與迭代次數(shù)的關(guān)系

    表  1  PI-ALMM求解流程

     (1) 初始化參數(shù)$\rho > 0$,$\alpha > 0$, $0 < c \le {1 / {\bar L}}$, $\ell > - \tau $,
     $0 < \beta \le 1$,及迭代下標(biāo)$j = 0$;
     (2) 初始化變量${\boldsymbol{p}}_{q,k}^j{\rm{ = }}{\left( {{{{{p}}_{{\rm{total}}}^1} / {Q{{,{{p}}_{{\rm{total}}}^2} / Q}{{, ··· ,{{p}}_{{\rm{total}}}^N} / Q}}}} \right)^{\rm{T}}}$,
     令${\boldsymbol{p}}_k^j = \left( {{\boldsymbol{p}}_{1,k}^j;{\boldsymbol{p}}_{2,k}^j; ··· ;{\boldsymbol{p}}_{Q,k}^j} \right)$, ${\boldsymbol}_k^j{\rm{ = }}{\boldsymbol{p}}_k^j$及${\boldsymbol{a} }_k^j{\rm{ = } }{ {{{\textit{0}}} }_{N \times 1} }$;
     (3) 計(jì)算$L\left( {{{\boldsymbol{p}}_k},{{\boldsymbol}_k};{{\boldsymbol{a}}_k}} \right)$關(guān)于${{\boldsymbol{p}}_k}$的梯度
     $\begin{array}{l} { {\text{?} }_{ { {\boldsymbol{p} }_k} } }L\left( { { {\boldsymbol{p} }_k},{ {\boldsymbol }_k};{ {\boldsymbol{a} }_k} } \right) = { {\nabla }_{ { {\boldsymbol{p} }_k} } }f\left( { { {\boldsymbol{p} }_k} } \right) + { {\boldsymbol{A} }^{\rm{T} } }{ {\boldsymbol{a} }_k} + \rho { {\boldsymbol{A} }^{\rm{T} } } \\ \begin{array}{*{20}{c} } {}&{}&{} \end{array}\left( { {\boldsymbol{A} }{ {\boldsymbol{p} }_k} - { {\boldsymbol{p} }_{ {\rm{total} } } } } \right) + \ell \left( { { {\boldsymbol{p} }_k} - { {\boldsymbol }_k} } \right) \end{array}d{array}$;
     (4) 循環(huán)
      (a) ${\boldsymbol{a}}_k^{j + 1} = {\boldsymbol{a}}_k^j + \alpha \left( {A{\boldsymbol{p}}_k^j - {{\boldsymbol{p}}_{{\rm{total}}}}} \right)$;
      (b) ${\boldsymbol{p} }_k^{j + 1} = {\left[ { {\boldsymbol{p} }_k^j - c \cdot { \nabla_{ {\boldsymbol{p} }_k^j} }L\left( { {\boldsymbol{p} }_k^j,{\boldsymbol }_k^j;{\boldsymbol{a} }_k^{j + 1} } \right)} \right]_ + }$;
      (c) ${\boldsymbol}_k^{j + 1} = {\boldsymbol}_k^j + \beta \left( {{\boldsymbol{p}}_k^{j + 1} - {\boldsymbol}_k^j} \right)$;
      (d) $j = j + 1$;
     (5) 直到$\left| {f\left( {{\boldsymbol{p}}_k^j} \right) - f\left( {{\boldsymbol{p}}_k^{j - 1}} \right)} \right| \le \varepsilon $($\varepsilon $為給定算法終止門限),退
       出循環(huán),令功率分配結(jié)果${\boldsymbol{p}}_k^{{\rm{opt}}} = {\boldsymbol{p}}_k^j$。
    下載: 導(dǎo)出CSV
  • [1] GRECO M S, GINI F, STINCO P, et al. Cognitive radars: On the road to reality: Progress thus far and possibilities for the future[J]. IEEE Signal Processing Magazine, 2018, 35(4): 112–125. doi: 10.1109/MSP.2018.2822847
    [2] 王祥麗, 易偉, 孔令講. 基于多目標(biāo)跟蹤的相控陣?yán)走_(dá)波束和駐留時(shí)間聯(lián)合分配方法[J]. 雷達(dá)學(xué)報(bào), 2017, 6(6): 602–610. doi: 10.12000/JR17045

    WANG Xiangli, YI Wei, and KONG Lingjiang. Joint beam selection and dwell time allocation for multi-target tracking in phased array radar system[J]. Journal of Radars, 2017, 6(6): 602–610. doi: 10.12000/JR17045
    [3] 嚴(yán)俊坤, 劉宏偉, 戴奉周, 等. 基于非線性機(jī)會約束規(guī)劃的多基雷達(dá)系統(tǒng)穩(wěn)健功率分配算法[J]. 電子與信息學(xué)報(bào), 2014, 36(3): 509–515. doi: 10.3724/SP.J.1146.2013.00656

    YAN Junkun, LIU Hongwei, DAI Fengzhou, et al. Nonlinear chance constrained programming based robust power allocation algorithm for multistatic radar systems[J]. Journal of Electronics &Information Technology, 2014, 36(3): 509–515. doi: 10.3724/SP.J.1146.2013.00656
    [4] SHI Chenguang, DING Lintao, WANG Fei, et al. Low probability of intercept-based collaborative power and bandwidth allocation strategy for multi-target tracking in distributed radar network system[J]. IEEE Sensors Journal, 2020, 20(12): 6367–6377. doi: 10.1109/JSEN.2020.2977328
    [5] YAN Junkun, DAI Jinhui, PU Wenqiang, et al. Quality of service constrained-resource allocation scheme for multiple target tracking in radar sensor network[J]. IEEE Systems Journal, 2021, 15(1): 771–779. doi: 10.1109/JSYST.2020.2990409
    [6] YAN Junkun, PU Wenqiang, ZHOU Shenghua, et al. Optimal resource allocation for asynchronous multiple targets tracking in heterogeneous radar networks[J]. IEEE Transactions on Signal Processing, 2020, 68: 4055–4068. doi: 10.1109/TSP.2020.3007313
    [7] XIE Mingchi, YI Wei, KONG Lingjiang, et al. Receive-beam resource allocation for multiple target tracking with distributed MIMO radars[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(5): 2421–2436. doi: 10.1109/TAES.2018.2818579
    [8] XIE Mingchi, YI Wei, KIRUBARAJAN T, et al. Joint node selection and power allocation strategy for multitarget tracking in decentralized radar networks[J]. IEEE Transactions on Signal Processing, 2018, 66(3): 729–743. doi: 10.1109/TSP.2017.2777394
    [9] YI Wei, YUAN Ye, HOSEINNEZHAD H, et al. Resource scheduling for distributed multi-target tracking in netted colocated MIMO radar systems[J]. IEEE Transactions on Signal Processing, 2020, 68: 1602–1617. doi: 10.1109/TSP.2020.2976587
    [10] ZHANG Haowei, LIU Weijian, XIE Junwei, et al. Joint subarray selection and power allocation for cognitive target tracking in large-scale MIMO radar networks[J]. IEEE Systems Journal, 2020, 14(2): 2569–2580. doi: 10.1109/JSYST.2019.2960401
    [11] 嚴(yán)俊坤, 糾博, 劉宏偉, 等. 一種針對多目標(biāo)跟蹤的多基雷達(dá)系統(tǒng)聚類與功率聯(lián)合分配算法[J]. 電子與信息學(xué)報(bào), 2013, 35(8): 1875–1881. doi: 10.3724/SP.J.1146.2012.01470

    YAN Junkun, JIU Bo, LIU Hongwei, et al. Joint cluster and power allocation algorithm for multiple targets tracking in multistatic radar systems[J]. Journal of Electronics &Information Technology, 2013, 35(8): 1875–1881. doi: 10.3724/SP.J.1146.2012.01470
    [12] YAN Junkun, PU Wenqiang, ZHOU Shenghua, et al. Collaborative detection and power allocation framework for target tracking in multiple radar system[J]. Information Fusion, 2020, 55: 173–183. doi: 10.1016/j.inffus.2019.08.010
    [13] 秦童, 戴奉周, 劉宏偉, 等. 火控相控陣?yán)走_(dá)的時(shí)間資源管理算法[J]. 系統(tǒng)工程與電子技術(shù), 2016, 38(3): 545–550. doi: 10.3969/j.issn.1001-506X.2016.03.11

    QING Tong, DAI Fengzhou, LIU Hongwei, et al. Time resource management algorithm for the fire control phased-array radar[J]. Systems Engineering and Electronics, 2016, 38(3): 545–550. doi: 10.3969/j.issn.1001-506X.2016.03.11
    [14] YAN Junkun, ZHANG Peng, DAI Jinhui, et al. Target capacity based simultaneous multibeam power allocation scheme for multiple target tracking application[J]. Signal Processing, 2021, 178: 107794. doi: 10.1016/j.sigpro.2020.107794
    [15] GURBUZ A C, MDRAFI R, and CETINER B A. Cognitive radar target detection and tracking with multifunctional reconfigurable antennas[J]. IEEE Aerospace and Electronic Systems Magazine, 2020, 35(6): 64–76. doi: 10.1109/MAES.2020.2990589
    [16] NEITZ O and EIBERT T F. A plane-wave synthesis approach for 3D monostatic RCS prediction from near-field measurements[C]. 2018 15th European Radar Conference, Madrid, Spain, 2018: 99–102. doi: 10.23919/EuRAD.2018.8546622.
    [17] SONG Wanjun and ZHANG Hou. RCS prediction of objects coated by magnetized plasma via scale model with FDTD[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(6): 1939–1945. doi: 10.1109/TMTT.2016.2645567
    [18] TICHAVSKY P, MURAVCHIK C H, and NEHORAI A. Posterior Cramer-Rao bounds for discrete-time nonlinear filtering[J]. IEEE Transactions on Signal Processing, 1998, 46(5): 1386–1396. doi: 10.1109/78.668800
    [19] ILIEV A, KYURKCHIEV N, MARKOV S. On the approximation of the step function by some sigmoid functions[J]. Mathematics and Computers in Simulation, 2017, 133: 223–234. doi: 10.1016/j.matcom.2015.11.005
    [20] GARULLI A and VICINO A. Convex relaxations in circuits, systems, and control[J]. IEEE Circuits and Systems Magazine, 2009, 9(2): 46–56. doi: 10.1109/MCAS.2008.931737
    [21] ZHANG Jiawei and LUO Zhiquan. A proximal alternating direction method of multiplier for linearly constrained nonconvex minimization[J]. SIAM Journal on Optimization, 2020, 30(3): 2272–2302. doi: 10.1137/19M1242276
    [22] ZHANG Jiawei and LUO Zhiquan. A global dual error bound and its application to the analysis of linearly constrained nonconvex optimization[J]. arXiv preprint arXiv: 2006.16440, 2020.
    [23] GREFENSTETTE J J. Optimization of control parameters for genetic algorithms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1986, 16(1): 122–128. doi: 10.1109/TSMC.1986.289288
  • 加載中
圖(7) / 表(1)
計(jì)量
  • 文章訪問數(shù):  894
  • HTML全文瀏覽量:  634
  • PDF下載量:  89
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2020-10-12
  • 修回日期:  2021-01-02
  • 網(wǎng)絡(luò)出版日期:  2021-01-07
  • 刊出日期:  2021-09-16

目錄

    /

    返回文章
    返回