一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于深度生成對(duì)抗網(wǎng)絡(luò)的海雜波數(shù)據(jù)增強(qiáng)方法

丁斌 夏雪 梁雪峰

丁斌, 夏雪, 梁雪峰. 基于深度生成對(duì)抗網(wǎng)絡(luò)的海雜波數(shù)據(jù)增強(qiáng)方法[J]. 電子與信息學(xué)報(bào), 2021, 43(7): 1985-1991. doi: 10.11999/JEIT200447
引用本文: 丁斌, 夏雪, 梁雪峰. 基于深度生成對(duì)抗網(wǎng)絡(luò)的海雜波數(shù)據(jù)增強(qiáng)方法[J]. 電子與信息學(xué)報(bào), 2021, 43(7): 1985-1991. doi: 10.11999/JEIT200447
Bin DING, Xue XIA, Xuefeng LIANG. Sea Clutter Data Augmentation Method Based on Deep Generative Adversarial Network[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1985-1991. doi: 10.11999/JEIT200447
Citation: Bin DING, Xue XIA, Xuefeng LIANG. Sea Clutter Data Augmentation Method Based on Deep Generative Adversarial Network[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1985-1991. doi: 10.11999/JEIT200447

基于深度生成對(duì)抗網(wǎng)絡(luò)的海雜波數(shù)據(jù)增強(qiáng)方法

doi: 10.11999/JEIT200447
基金項(xiàng)目: 西安市科技計(jì)劃(2019KJWL30)
詳細(xì)信息
    作者簡(jiǎn)介:

    丁斌:男,1980年生,博士,高級(jí)工程師,研究方向?yàn)橹悄苄畔⑻幚?、圖像解譯與智慧遙感

    夏雪:女,1985年生,博士,研究方向?yàn)樾盘?hào)與信息處理

    梁雪峰:男,1973年生,博士,教授,博士生導(dǎo)師,研究方向?yàn)橐曈X(jué)認(rèn)知計(jì)算(心理學(xué))、計(jì)算機(jī)視覺(jué)、視覺(jué)大數(shù)據(jù)挖掘、智能算法

    通訊作者:

    丁斌 xadb2005@163.com

  • 中圖分類號(hào): TN959.72; TP391

Sea Clutter Data Augmentation Method Based on Deep Generative Adversarial Network

Funds: Xi’an Science and Technology Plan (2019KJWL30)
  • 摘要: 海雜波數(shù)據(jù)稀缺,獲取海雜波數(shù)據(jù)成本高、周期長(zhǎng),極大地限制了海雜波特性研究及海洋遙感應(yīng)用。該文主要研究了基于深度生成性對(duì)抗網(wǎng)絡(luò)(GAN)的海雜波數(shù)據(jù)生成方法,通過(guò)擴(kuò)展傳統(tǒng)的GAN框架,形成了1維海雜波數(shù)據(jù)生成和鑒別模型,基于實(shí)測(cè)海雜波數(shù)據(jù)集,進(jìn)行對(duì)抗網(wǎng)絡(luò)生成和鑒別模型訓(xùn)練,分析了生成模型所生成的海雜波數(shù)據(jù)的幅度分布特性和時(shí)間、空間相關(guān)性?;趯?shí)測(cè)數(shù)據(jù)驗(yàn)證了該方法能夠生成更多、更多樣、與真實(shí)海雜波數(shù)據(jù)分布相近的海雜波數(shù)據(jù)。
  • 圖  1  GAN結(jié)構(gòu)示意圖

    圖  2  海雜波數(shù)據(jù)對(duì)抗生成網(wǎng)絡(luò)結(jié)構(gòu)

    圖  3  單載頻發(fā)射信號(hào),海雜波時(shí)域波形

    圖  4  實(shí)測(cè)海雜波數(shù)據(jù)實(shí)部&生成海雜波數(shù)據(jù)實(shí)部

    圖  5  實(shí)測(cè)海雜波數(shù)據(jù)虛部&生成海雜波數(shù)據(jù)虛部

    圖  6  第100采樣點(diǎn)10000幀海雜波幅度

    圖  7  生成海雜波數(shù)據(jù)(10000幀)雜波幅度圖

    圖  8  第100采樣點(diǎn)10000幀海雜波幅度直方圖

    圖  9  生成海雜波數(shù)據(jù)(10000幀)幅度直方圖

    圖  10  直接生成回波幅度(模值)(10000幀)直方圖

    圖  11  幅度分布擬合曲線

    圖  12  實(shí)測(cè)海雜波數(shù)據(jù)&生成海雜波數(shù)據(jù)功率譜密度

    圖  13  實(shí)測(cè)&生成海雜波數(shù)據(jù)時(shí)間相關(guān)系數(shù)

    圖  14  實(shí)測(cè)海雜波&生成海雜波距離向第100采樣點(diǎn)處距離維空間相關(guān)系數(shù)

    表  1  生成器、辨別器網(wǎng)絡(luò)參數(shù)

    生成器網(wǎng)絡(luò)判別器網(wǎng)絡(luò)
    LayerAct./NormOutput shapeLayerAct./NormOutput shape
    Fully LinearReLUConv1dLeaky ReLU64×2048
    BatchNorm1d1×256Conv1dLeaky ReLU128×512
    Conv1dReLU512×512Conv1dLeaky ReLU256×128
    Conv1dReLU256×1024Conv1dLeaky ReLU512×128
    Conv1dReLU128×1024Conv1dLeaky ReLU1024×16
    Conv1dReLU64×4096Fully Linearsigmoid1×1
    Conv1dTanh1×8192
    下載: 導(dǎo)出CSV
  • [1] 劉寧波, 董云龍, 王國(guó)慶, 等. X波段雷達(dá)對(duì)海探測(cè)試驗(yàn)與數(shù)據(jù)獲取[J]. 雷達(dá)學(xué)報(bào), 2019, 8(5): 656–667. doi: 10.12000/JR19089

    LIU Ningbo, DONG Yunlong, WANG Guoqing, et al. Sea-detecting X-band radar and data acquisition program[J]. Journal of Radars, 2019, 8(5): 656–667. doi: 10.12000/JR19089
    [2] DING Hao, GUAN Jian, LIU Ningbo, et al. Modeling of heavy tailed sea clutter based on the generalized central limit theory[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(11): 1591–1595. doi: 10.1109/LGRS.2016.2596322
    [3] TITI G W and MARSHALL D F. The ARPA/NAVY mountaintop program: Adaptive signal processing for airborne early warning radar[C]. 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings, Atlanta, USA, 1996: 1165–1168.
    [4] DROSOPOULOS A. Description of the OHGR database[R]. Technical Note 94–14, 1994.
    [5] GRECO M, STINCO P, GINI F, et al. Impact of sea clutter nonstationarity on disturbance covariance matrix estimation and CFAR detector performance[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3): 1502–1513. doi: 10.1109/TAES.2010.5545205
    [6] 王帥. 基于人工智能(GAN)的影像技術(shù)探究[D]. [碩士論文], 南京師范大學(xué), 2019.
    [7] 雷志勇, 黃忠平, 吳剛, 等. 機(jī)載L波段雷達(dá)海雜波幅度分布特性分析[J]. 電波科學(xué)學(xué)報(bào), 2019, 34(5): 558–566.

    LEI Zhiyong, HUANG Zhongping, WU Gang, et al. Analysis of sea clutter distribution with L-band airborne radar[J]. Chinese Journal of Radio Science, 2019, 34(5): 558–566.
    [8] 劉恒燕, 宋杰, 熊偉, 等. 大入射余角海雜波相關(guān)特性分析及幅度擬合[J]. 海軍航空工程學(xué)院學(xué)報(bào), 2018, 33(3): 307–312. doi: 10.7682/j.issn.1673-1522.2018.03.009

    LIU Hengyan, SONG Jie, XIONG Wei, et al. Sea clutter correlation analysis and amplitude fitting for large grazing angle[J]. Journal of Naval Aeronautical and Astronautical University, 2018, 33(3): 307–312. doi: 10.7682/j.issn.1673-1522.2018.03.009
    [9] 傅俊滔, 周國(guó)安, 陳紅. 基于ZMNL的Pareto雜波模擬改進(jìn)方法[J]. 彈箭與制導(dǎo)學(xué)報(bào), 2019, 39(4): 19–21, 28.

    FU Juntao, ZHOU Guoan, and CHEN Hong. Improved method of Pareto clutter simulation based on ZMNL[J]. Journal of Projectiles,Rockets,Missiles and Guidance, 2019, 39(4): 19–21, 28.
    [10] 王坤峰, 左旺孟, 譚營(yíng), 等. 生成式對(duì)抗網(wǎng)絡(luò): 從生成數(shù)據(jù)到創(chuàng)造智能[J]. 自動(dòng)化學(xué)報(bào), 2018, 44(5): 769–774.

    WANG Kunfeng, ZUO Wangmeng, TAN Ying, et al. Generative adversarial networks: from generating data to creating intelligence[J]. Acta Automatica Sinica, 2018, 44(5): 769–774.
    [11] 徐雅楠, 劉寧波, 丁昊, 等. 利用CNN的海上目標(biāo)探測(cè)背景分類方法[J]. 電子學(xué)報(bào), 2019, 47(12): 2505–2514.

    XU Yanan, LIU Ningbo, DING Hao, et al. Background classification method for marine target detection based on CNN[J]. Acta Electronica Sinica, 2019, 47(12): 2505–2514.
    [12] 丁昊, 劉寧波, 董云龍, 等. 雷達(dá)海雜波測(cè)量試驗(yàn)回顧與展望[J]. 雷達(dá)學(xué)報(bào), 2019, 8(3): 281–302. doi: 10.12000/JR19006

    DING Hao, LIU Ningbo, DONG Yunlong, et al. Overview and prospects of radar sea clutter measurement experiments[J]. Journal of Radars, 2019, 8(3): 281–302. doi: 10.12000/JR19006
    [13] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[C]. Conference on Neural Information Processing Systems (NIPS), Montreal Canada, 2014: 1–23.
    [14] ZHANG Zhimian, WANG Haipeng, XU Feng, et al. Complex-valued convolutional neural network and its application in polarimetric SAR image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(12): 7177–7188.
    [15] ARJOVSKY M, CHINTALA S, and BOTTOU L. Wasserstein GAN[C]. International Conference on Machine Learning, Sydneym, Australia, 2017: 1–32.
    [16] GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANs[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 5767–5777.
    [17] 關(guān)鍵, 丁昊, 黃勇, 等. 實(shí)測(cè)海雜波數(shù)據(jù)空間相關(guān)性研究[J]. 電波科學(xué)學(xué)報(bào), 2012, 27(5): 943–953.

    GUAN Jian, DING Hao, HUANG Yong, et al. Spatial correlation property with measured sea clutter data[J]. Chinese Journal of Radio Science, 2012, 27(5): 943–953.
  • 加載中
圖(14) / 表(1)
計(jì)量
  • 文章訪問(wèn)數(shù):  2236
  • HTML全文瀏覽量:  1350
  • PDF下載量:  292
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2020-06-02
  • 修回日期:  2021-02-27
  • 網(wǎng)絡(luò)出版日期:  2021-03-04
  • 刊出日期:  2021-07-10

目錄

    /

    返回文章
    返回