面向6G物聯(lián)網(wǎng)的分布式譯碼技術(shù)
doi: 10.11999/JEIT200343
-
1.
新南威爾士大學(xué)電子工程與通信學(xué)院 悉尼 2032
-
2.
西安電子科技大學(xué)綜合業(yè)務(wù)網(wǎng)理論及關(guān)鍵技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室 西安 710071
A Distributed Decoding Algorithm for 6G Internet-of-Things Networks
-
1.
School of Electrical Engineering and Telecommunications, Univ. of New South Wales, Sydney 2032, Australia
-
2.
State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an 710071, China
-
摘要: 隨著5G商業(yè)化和標(biāo)準(zhǔn)化的逐步推進(jìn),對(duì)6G技術(shù)的研究也提上了日程。由于其在6G無(wú)線通信系統(tǒng)中的巨大應(yīng)用前景,物聯(lián)網(wǎng)(IoT)技術(shù)引起了人們廣泛的興趣。面向6G的物聯(lián)網(wǎng)網(wǎng)絡(luò)需要允許大量設(shè)備接入并支持海量數(shù)據(jù)傳輸,其魯棒性和可擴(kuò)展性至關(guān)重要。在物聯(lián)網(wǎng)中,所述“事物”(用戶)可以通過(guò)采用各種多功能無(wú)線傳感器實(shí)時(shí)收集環(huán)境數(shù)據(jù)。通常來(lái)說(shuō),收集的數(shù)據(jù)將反饋到中央單元以進(jìn)行進(jìn)一步處理。但是這一機(jī)制依賴于中央單元的正常工作,魯棒性較差。該文提出一種分布式譯碼算法,該算法通過(guò)讓各用戶之間互相協(xié)作,交換信息來(lái)實(shí)現(xiàn)在各個(gè)用戶處完成譯碼。利用分布式譯碼算法,每個(gè)用戶可以得到與中心化處理相似的譯碼性能,從而提高了網(wǎng)絡(luò)的魯棒性和可擴(kuò)展性。同時(shí),相比傳統(tǒng)分布式譯碼算法,該算法不需要每個(gè)用戶了解網(wǎng)絡(luò)的拓?fù)浣Y(jié)構(gòu),因此為面向6G的高動(dòng)態(tài)物聯(lián)網(wǎng)提供了技術(shù)支撐。
-
關(guān)鍵詞:
- 6G /
- 物聯(lián)網(wǎng) /
- 譯碼方法 /
- 消息傳遞
Abstract: With the standardization and the commercialization of 5G, the research on 6G technology is started. The Internet-of-Things (IoT) draws substantial interests in recent years due to its great potential for several applications in 6G wireless communication systems. As massive access and explosive data transmission are expected, the robustness and scalability are two key aspects for 6G IoT networks. In IoT networks, the said “things” (users) can collect environmental data in real time by adopting various multi-functional wireless sensors. Conventionally, the collected data are feedback to a central unit for further processing. However, the performance of this scheme relies on the normal operation of the central unit, which is not robust to the malfunction of central unit. This paper proposes a distributed decoding algorithm that the decoding is done at local users by enabling the cooperation and information exchange between users. As a result, each user achieves a decoding performance similar to that of the centralized approach which improves the robustness and the scalability of the network. Meanwhile, compared to the conventional distributed decoding approach, the proposed algorithm does not require that each user has the perfect knowledge of the network topology. Therefore, the proposed algorithm lays the foundation of 6G IoT networks.-
Key words:
- 6G /
- Internet-of-Things (IoT) /
- Decoding algorithm /
- Message passing
-
WONG V W S, SCHOBER R, NG D W K, et al. Key Technologies for 5G Wireless Systems[M]. Cambridge, UK: Cambridge University Press, 2017: 55–83. 尤肖虎, 尹浩, 鄔賀銓. 6G與廣域物聯(lián)網(wǎng)[J]. 物聯(lián)網(wǎng)學(xué)報(bào), 2020, 4(1): 3–11. doi: 10.11959/j.issn.2096-3750.2020.00158YOU Xiaohu, YIN Hao, and WU Hequan. On 6G and wide-area IoT[J]. Chinese Journal on Internet of Things, 2020, 4(1): 3–11. doi: 10.11959/j.issn.2096-3750.2020.00158 DAVID K and BERNDT H. 6G vision and requirements: Is there any need for beyond 5G?[J]. IEEE Vehicular Technology Magazine, 2018, 13(3): 72–80. doi: 10.1109/MVT.2018.2848498 ATZORI L, IERA A, and MORABITO G. The internet of things: A survey[J]. Computer Networks, 2010, 54(15): 2787–2805. doi: 10.1016/j.comnet.2010.05.010 FENG Shuo, SETOODEH P, and HAYKIN S. Smart home: Cognitive interactive people-centric Internet of Things[J]. IEEE Communications Magazine, 2017, 55(2): 34–39. doi: 10.1109/MCOM.2017.1600682CM FIGUEIREDO L, JESUS I, MACHADO J A T, et al. Towards the development of intelligent transportation systems[C]. 2001 IEEE Intelligent Transportation Systems Conference, Oakland, USA, 2001: 1206–1211. BOCKELMANN C, PRATAS N, NIKOPOUR H, et al. Massive machine-type communications in 5G: Physical and MAC-layer solutions[J]. IEEE Communications Magazine, 2016, 54(9): 59–65. doi: 10.1109/MCOM.2016.7565189 楊洋, 陳超, 白寶明, 等. LDPC碼串行譯碼策略的收斂速度分析[J]. 西安電子科技大學(xué)學(xué)報(bào): 自然科學(xué)版, 2010, 37(5): 795–800. doi: 10.3969/J.ISSN.1001-2400.2010.05.004YANG Yang, CHEN Chao, BAI Baoming, et al. Analysis of the convergence rate of serial schedule based decoding for LDPC codes[J]. Journal of Xidian University, 2010, 37(5): 795–800. doi: 10.3969/J.ISSN.1001-2400.2010.05.004 GUNTURU A and CHAVVA A K R. Opportunistic early decoding for NB-IoT devices using link abstraction based on RBIR metric[C]. 2018 IEEE Wireless Communications and Networking Conference, Barcelona, Spain, 2018: 1–6. LI Shihua, DU Haibo, and LIN Xiangze. Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics[J]. Automatica, 2011, 47(8): 1706–1712. doi: 10.1016/J.AUTOMATICA.2011.02.045 LYNCH N A. Distributed Algorithms[M]. San Francisco: Elsevier, 1996: 122–150. ZHU Hao, GIANNAKIS G B, and CANO A. Distributed in-network channel decoding[J]. IEEE Transactions on Signal Processing, 2009, 57(10): 3970–3983. doi: 10.1109/TSP.2009.2023936 DHULI S, GAURAV K, and SINGH Y N. Convergence analysis for regular wireless consensus networks[J]. IEEE Sensors Journal, 2015, 15(8): 4522–4531. doi: 10.1109/JSEN.2015.2420952 KSCHISCHANG F R, FREY B J, and LOELIGER H A. Factor graphs and the sum-product algorithm[J]. IEEE Transactions on Information Theory, 2001, 47(2): 498–519. doi: 10.1109/18.910572 吳皓威, 武小飛, 鄒潤(rùn)秋, 等. 空間耦合LDPC碼的分層譯碼算法[J]. 電子與信息學(xué)報(bào), 2020, 42(8): 1881–1887. doi: 10.11999/JEIT190626WU Haowei, WU Xiaofei, ZOU Runqiu, et al. A layered decoding algorithm for spatially-coupled LDPC codes[J]. Journal of Electronics &Information Technology, 2020, 42(8): 1881–1887. doi: 10.11999/JEIT190626 -