一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標(biāo)題
留言內(nèi)容
驗證碼

自適應(yīng)調(diào)節(jié)濾波強度的SAR圖像非局部平均抑斑算法

朱磊 李敬曼 潘楊 劉玉春 胡曉

朱磊, 李敬曼, 潘楊, 劉玉春, 胡曉. 自適應(yīng)調(diào)節(jié)濾波強度的SAR圖像非局部平均抑斑算法[J]. 電子與信息學(xué)報, 2021, 43(5): 1258-1266. doi: 10.11999/JEIT200099
引用本文: 朱磊, 李敬曼, 潘楊, 劉玉春, 胡曉. 自適應(yīng)調(diào)節(jié)濾波強度的SAR圖像非局部平均抑斑算法[J]. 電子與信息學(xué)報, 2021, 43(5): 1258-1266. doi: 10.11999/JEIT200099
Lei ZHU, Jingman LI, Yang PAN, Yuchun LIU, Xiao HU. SAR Image Despeckling Algorithm Using Non-Local Means with Adaptive Filtering Strength[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1258-1266. doi: 10.11999/JEIT200099
Citation: Lei ZHU, Jingman LI, Yang PAN, Yuchun LIU, Xiao HU. SAR Image Despeckling Algorithm Using Non-Local Means with Adaptive Filtering Strength[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1258-1266. doi: 10.11999/JEIT200099

自適應(yīng)調(diào)節(jié)濾波強度的SAR圖像非局部平均抑斑算法

doi: 10.11999/JEIT200099
基金項目: 國家自然科學(xué)基金(61971339),陜西省重點研發(fā)計劃(2019GY-113),西安市科技局創(chuàng)新引導(dǎo)計劃(201805030YD8CG14(6))
詳細(xì)信息
    作者簡介:

    朱磊:男,1979年生,教授,碩士生導(dǎo)師,研究方向為圖像處理、嵌入式系統(tǒng)應(yīng)用

    李敬曼:女,1996年生,碩士生,研究方向為圖像處理

    潘楊:女,1983年生,講師,研究方向為數(shù)字信號處理、聲場仿真與聲信號處理

    劉玉春:男,1979年生,副教授,研究方向為信號與信號處理

    胡曉:女,1993年生,碩士生,研究方向為圖像處理

    通訊作者:

    朱磊 zhulei791014@163.com

  • 中圖分類號: TN911.73; TP751

SAR Image Despeckling Algorithm Using Non-Local Means with Adaptive Filtering Strength

Funds: The National Natural Science Foundation of China (61971339), The Shaanxi Provincial Key Research and Development Program (2019GY-113), The Xi’an Science and Technology Bureau Innovation and Guidance Program (201805030YD8CG14(6))
  • 摘要: 為提升對SAR圖像乘性相干斑的抑制水平與邊緣保護性能,該文提出了一種可自適應(yīng)調(diào)節(jié)濾波強度(AFS)的SAR圖像非局部平均(NLM)抑斑新算法(AFS-NLM)。該算法利用Frost濾波圖像計算的局部均值與方差來改善SAR圖像場景參量的估計,形成了一種能更好刻畫SAR圖像同質(zhì)區(qū)與邊緣區(qū)的改進Kuan濾波系數(shù)。利用局部均值比與改進Kuan濾波系數(shù)分別作為新的相似性測量參量與自適應(yīng)衰減因子,構(gòu)建了一種更適應(yīng)SAR圖像乘性噪聲特性的改進NLM濾波。利用偏平滑參數(shù)與偏邊緣保護參數(shù)控制下的改進NLM濾波,分別替代經(jīng)典Kuan濾波模型中的像素局部均值與自身灰度值作為加權(quán)項,并采用由改進Kuan濾波系數(shù)構(gòu)建的自適應(yīng)調(diào)節(jié)因子對二者進行加權(quán)平均,從而形成了一種可自適應(yīng)調(diào)節(jié)濾波強度的加權(quán)濾波新模型。實驗表明,該文算法與近期多種先進算法相比,具有更好的相干斑抑制與邊緣保護性能。
  • 圖  1  自適應(yīng)調(diào)節(jié)NLM濾波強度的SAR圖像抑斑新模型框圖

    圖  2  Kuan濾波系數(shù)與改進Kuan濾波系數(shù)對比

    圖  3  兩種方法估計的NLM濾波加權(quán)系數(shù)圖對比

    圖  4  實驗測試用真實SAR圖像

    圖  5  各算法對圖4兩幅真實SAR圖像的抑斑圖及其邊緣檢測圖對比

    表  1  4種算法對真實SAR圖像抑斑參數(shù)比較

    抑斑算法VENLVEPI
    A區(qū)B區(qū)C區(qū)D區(qū)圖4(a)圖4(b)
    SAR-BM3D755.8332.01610.81703.10.9440.771
    NL-CV2070.0788.91001.13171.90.4490.400
    MR-NLM2485.4826.11774.14100.10.9580.780
    AFS-NLM5064.62312.83555.3241150.9630.824
    下載: 導(dǎo)出CSV
  • [1] 魏松杰, 蔣鵬飛, 袁秋壯, 等. 深度神經(jīng)網(wǎng)絡(luò)下的SAR艦船目標(biāo)檢測與區(qū)分模型[J]. 西北工業(yè)大學(xué)學(xué)報, 2019, 37(3): 587–593. doi: 10.1051/jnwpu/20193730587

    WEI Songjie, JIANG Pengfei, YUAN Qiuzhuang, et al. Detection and recognition of SAR small ship objects using deep neural network[J]. Journal of Northwestern Polytechnical University, 2019, 37(3): 587–593. doi: 10.1051/jnwpu/20193730587
    [2] LIU Su, ZHANG Gong, and LIU Wenbo. Group sparse representation based dictionary learning for SAR image despeckling[J]. IEEE Access, 2019, 7: 30809–30817. doi: 10.1109/ACCESS.2019.2859825
    [3] 李煜, 陳杰, 張淵智. 合成孔徑雷達海面溢油探測研究進展[J]. 電子與信息學(xué)報, 2019, 41(3): 751–762. doi: 10.11999/JEIT180468

    LI Yu, CHEN Jie, and ZHANG Yuanzhi. Progress in research on marine oil spills detection using synthetic aperture radar[J]. Journal of Electronics &Information Technology, 2019, 41(3): 751–762. doi: 10.11999/JEIT180468
    [4] 吳元. 一種基于參數(shù)更新的機載SAR圖像目標(biāo)定位方法[J]. 電子與信息學(xué)報, 2019, 41(5): 1063–1068. doi: 10.11999/JEIT180564

    WU Yuan. An airborne SAR image target location algorithm based on parameter refining[J]. Journal of Electronics &Information Technology, 2019, 41(5): 1063–1068. doi: 10.11999/JEIT180564
    [5] 彭書娟, 曲長文, 李建偉, 等. 基于ROEWA算子局部活動輪廓的SAR圖像分割算法[J]. 系統(tǒng)工程與電子技術(shù), 2019, 41(2): 280–290. doi: 10.3969/j.issn.1001-506X.2019.02.09

    PENG Shujuan, QU Changwen, LI Jianwei, et al. Local motion contour segmentation algorithm of SAR image based on ROEWA operator[J]. Systems Engineering and Electronics, 2019, 41(2): 280–290. doi: 10.3969/j.issn.1001-506X.2019.02.09
    [6] 韓子碩, 王春平. 基于改進FCM與MRF的SAR圖像分割[J]. 系統(tǒng)工程與電子技術(shù), 2019, 41(8): 1726–1734. doi: 10.3969/j.issn.1001-506X.2019.08.08

    HAN Zishuo and WANG Chunping. SAR image segmentation based on improved FCM and MRF[J]. Systems Engineering and Electronics, 2019, 41(8): 1726–1734. doi: 10.3969/j.issn.1001-506X.2019.08.08
    [7] YU Meiting, QUAN Sinong, KUANG Gangyao, et al. SAR target recognition via joint sparse and dense representation of monogenic signal[J]. Remote Sensing, 2019, 11(22): 2676. doi: 10.3390/rs11222676
    [8] LEE J S. Digital image enhancement and noise filtering by use of local statistics[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1980, PAMI-2(2): 165–168. doi: 10.1109/TPAMI.1980.4766994
    [9] KUAN D T, SAWCHUK A A, STRAND T C, et al. Adaptive noise smoothing filter for images with signal-dependent noise[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1985, PAMI-7(2): 165–177. doi: 10.1109/TPAMI.1985.4767641
    [10] MA Xiaoshuang and WU Penghai. Multitemporal SAR image despeckling based on a scattering covariance matrix of image patch[J]. Sensors, 2019, 19(14): 3057. doi: 10.3390/s19143057
    [11] BHUIYAN M I H, AHMAD M, and SWAMY M N S. Spatially adaptive wavelet-based method using the cauchy prior for denoising the SAR images[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2007, 17(4): 500–507. doi: 10.1109/TCSVT.2006.888020
    [12] CHOI H and JEONG J. Speckle noise reduction technique for SAR images using statistical characteristics of speckle noise and discrete wavelet transform[J]. Remote Sensing, 2019, 11(10): 1184. doi: 10.3390/rs11101184
    [13] GAO Fei, XUE Xiangshang, SUN Jinping, et al. A SAR image despeckling method based on two-dimensional S transform shrinkage[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(5): 3025–3034. doi: 10.1109/TGRS.2015.2510161
    [14] YU Yongjian and ACTON S T. Speckle reducing anisotropic diffusion[J]. IEEE Transactions on Image Processing, 2002, 11(11): 1260–1270. doi: 10.1109/TIP.2002.804276
    [15] ZHU Lei, ZHAO Xiaotian, and GU Meihua. SAR image despeckling using improved detail-preserving anisotropic diffusion[J]. Electronics Letters, 2014, 50(15): 1092–1093. doi: 10.1049/el.2014.0293
    [16] MISHRA D, CHAUDHURY S, SARKAR M, et al. Edge probability and pixel relativity-based speckle reducing anisotropic diffusion[J]. IEEE Transactions on Image Processing, 2018, 27(2): 649–664. doi: 10.1109/TIP.2017.2762590
    [17] BUADES A, COLL B, and MOREL J M. A non-local algorithm for image denoising[C]. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005: 60–65. doi: 10.1109/CVPR.2005.38.
    [18] PARRILLI S, PODERICO M, ANGELINO C V, et al. A nonlocal SAR image denoising algorithm based on LLMMSE wavelet shrinkage[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(2): 606–616. doi: 10.1109/TGRS.2011.2161586
    [19] CHEN Shaobo, HOU Jianhua, ZHANG Hua, et al. De-speckling method based on non-local means and coefficient variation of SAR image[J]. Electronics Letters, 2014, 50(18): 1314–1316. doi: 10.1049/el.2014.0630
    [20] 朱磊, 蔡飛飛, 王延年, 等. SAR圖像相干斑的非局部平均濾波算法[J]. 西安交通大學(xué)學(xué)報, 2018, 52(4): 98–104. doi: 10.7652/xjtuxb201804014

    ZHU Lei, CAI Feifei, WANG Yannian, et al. A non-local means filtering algorithm for despeckling of SAR images[J]. Journal of Xian Jiaotong University, 2018, 52(4): 98–104. doi: 10.7652/xjtuxb201804014
    [21] FROST V S, STILES J A, SHANMUGAN K S, et al. A model for radar images and its application to adaptive digital filtering of multiplicative noise[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1982, PAMI-4(2): 157–165. doi: 10.1109/TPAMI.1982.4767223
    [22] TOUZI R, LOPES A, and BOUSQUET P. A statistical and geometrical edge detector for SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 1988, 26(6): 764–773. doi: 10.1109/36.7708
    [23] 朱磊, 水鵬朗, 章為川, 等. 利用區(qū)域劃分的合成孔徑雷達圖像相干斑抑制算法[J]. 西安交通大學(xué)學(xué)報, 2012, 46(10): 83–88, 100.

    ZHU Lei, SHUI Penglang, ZHANG Weichuan, et al. A despeckling algorithm for synthetic aperture radar images using region subdivision[J]. Journal of Xian Jiaotong University, 2012, 46(10): 83–88, 100.
  • 加載中
圖(5) / 表(1)
計量
  • 文章訪問數(shù):  796
  • HTML全文瀏覽量:  460
  • PDF下載量:  101
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2020-02-11
  • 修回日期:  2020-09-09
  • 網(wǎng)絡(luò)出版日期:  2020-09-15
  • 刊出日期:  2021-05-18

目錄

    /

    返回文章
    返回