自適應(yīng)調(diào)節(jié)濾波強度的SAR圖像非局部平均抑斑算法
doi: 10.11999/JEIT200099
-
1.
西安工程大學(xué)電子信息學(xué)院 西安 710048
-
2.
周口師范學(xué)院機械與電氣工程學(xué)院 周口 466001
基金項目: 國家自然科學(xué)基金(61971339),陜西省重點研發(fā)計劃(2019GY-113),西安市科技局創(chuàng)新引導(dǎo)計劃(201805030YD8CG14(6))
SAR Image Despeckling Algorithm Using Non-Local Means with Adaptive Filtering Strength
-
1.
School of Electronics and Information, Xi’an Polytechnic University, Xi’an 710048, China
-
2.
School of Mechanical and Electrical Engineering, Zhoukou Normal University, Zhoukou 466001, China
Funds: The National Natural Science Foundation of China (61971339), The Shaanxi Provincial Key Research and Development Program (2019GY-113), The Xi’an Science and Technology Bureau Innovation and Guidance Program (201805030YD8CG14(6))
-
摘要: 為提升對SAR圖像乘性相干斑的抑制水平與邊緣保護性能,該文提出了一種可自適應(yīng)調(diào)節(jié)濾波強度(AFS)的SAR圖像非局部平均(NLM)抑斑新算法(AFS-NLM)。該算法利用Frost濾波圖像計算的局部均值與方差來改善SAR圖像場景參量的估計,形成了一種能更好刻畫SAR圖像同質(zhì)區(qū)與邊緣區(qū)的改進Kuan濾波系數(shù)。利用局部均值比與改進Kuan濾波系數(shù)分別作為新的相似性測量參量與自適應(yīng)衰減因子,構(gòu)建了一種更適應(yīng)SAR圖像乘性噪聲特性的改進NLM濾波。利用偏平滑參數(shù)與偏邊緣保護參數(shù)控制下的改進NLM濾波,分別替代經(jīng)典Kuan濾波模型中的像素局部均值與自身灰度值作為加權(quán)項,并采用由改進Kuan濾波系數(shù)構(gòu)建的自適應(yīng)調(diào)節(jié)因子對二者進行加權(quán)平均,從而形成了一種可自適應(yīng)調(diào)節(jié)濾波強度的加權(quán)濾波新模型。實驗表明,該文算法與近期多種先進算法相比,具有更好的相干斑抑制與邊緣保護性能。
-
關(guān)鍵詞:
- SAR圖像 /
- 相干斑抑制 /
- 自適應(yīng)濾波強度 /
- 非局部平均 /
- 改進Kuan濾波
Abstract: A new Non-Local Means (NLM) despeckling algorithm (AFS-NLM) with Adaptive Filtering Strength (AFS) is proposed to improve the performance of reducing multiplicative speckle and preserving the edges in SAR images. A modified Kuan filtering coefficient which can better characterize the homogeneous and edge regions of SAR image is formed by using the local mean and variance calculated in the Frost filtered image to improve the estimation of SAR image scene parameters. An improved NLM which adapts to the multiplicative noise characteristics is constructed by the new similarity measurement parameter estimated by the local mean ratio and the new adaptive decay factor estimated by the improved Kuan filtering coefficient. A new weighted filtering model which can automatically adjust the filtering strength is formed. In the new model, the improved NLM filters controlled by the skew smoothing parameters and the skew edge protection parameters are used to replace the local average value of pixels and the gray value of pixels in the classic Kuan filter model as weighting items, and the adaptive adjustment factor constructed by the improved Kuan filter coefficient is used to weight the two items. Experimental results and comparisons with several advanced despeckling algorithms in recent years show that the proposed algorithm has better speckle suppression and edge preservation performance. -
[1] 魏松杰, 蔣鵬飛, 袁秋壯, 等. 深度神經(jīng)網(wǎng)絡(luò)下的SAR艦船目標(biāo)檢測與區(qū)分模型[J]. 西北工業(yè)大學(xué)學(xué)報, 2019, 37(3): 587–593. doi: 10.1051/jnwpu/20193730587WEI Songjie, JIANG Pengfei, YUAN Qiuzhuang, et al. Detection and recognition of SAR small ship objects using deep neural network[J]. Journal of Northwestern Polytechnical University, 2019, 37(3): 587–593. doi: 10.1051/jnwpu/20193730587 [2] LIU Su, ZHANG Gong, and LIU Wenbo. Group sparse representation based dictionary learning for SAR image despeckling[J]. IEEE Access, 2019, 7: 30809–30817. doi: 10.1109/ACCESS.2019.2859825 [3] 李煜, 陳杰, 張淵智. 合成孔徑雷達海面溢油探測研究進展[J]. 電子與信息學(xué)報, 2019, 41(3): 751–762. doi: 10.11999/JEIT180468LI Yu, CHEN Jie, and ZHANG Yuanzhi. Progress in research on marine oil spills detection using synthetic aperture radar[J]. Journal of Electronics &Information Technology, 2019, 41(3): 751–762. doi: 10.11999/JEIT180468 [4] 吳元. 一種基于參數(shù)更新的機載SAR圖像目標(biāo)定位方法[J]. 電子與信息學(xué)報, 2019, 41(5): 1063–1068. doi: 10.11999/JEIT180564WU Yuan. An airborne SAR image target location algorithm based on parameter refining[J]. Journal of Electronics &Information Technology, 2019, 41(5): 1063–1068. doi: 10.11999/JEIT180564 [5] 彭書娟, 曲長文, 李建偉, 等. 基于ROEWA算子局部活動輪廓的SAR圖像分割算法[J]. 系統(tǒng)工程與電子技術(shù), 2019, 41(2): 280–290. doi: 10.3969/j.issn.1001-506X.2019.02.09PENG Shujuan, QU Changwen, LI Jianwei, et al. Local motion contour segmentation algorithm of SAR image based on ROEWA operator[J]. Systems Engineering and Electronics, 2019, 41(2): 280–290. doi: 10.3969/j.issn.1001-506X.2019.02.09 [6] 韓子碩, 王春平. 基于改進FCM與MRF的SAR圖像分割[J]. 系統(tǒng)工程與電子技術(shù), 2019, 41(8): 1726–1734. doi: 10.3969/j.issn.1001-506X.2019.08.08HAN Zishuo and WANG Chunping. SAR image segmentation based on improved FCM and MRF[J]. Systems Engineering and Electronics, 2019, 41(8): 1726–1734. doi: 10.3969/j.issn.1001-506X.2019.08.08 [7] YU Meiting, QUAN Sinong, KUANG Gangyao, et al. SAR target recognition via joint sparse and dense representation of monogenic signal[J]. Remote Sensing, 2019, 11(22): 2676. doi: 10.3390/rs11222676 [8] LEE J S. Digital image enhancement and noise filtering by use of local statistics[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1980, PAMI-2(2): 165–168. doi: 10.1109/TPAMI.1980.4766994 [9] KUAN D T, SAWCHUK A A, STRAND T C, et al. Adaptive noise smoothing filter for images with signal-dependent noise[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1985, PAMI-7(2): 165–177. doi: 10.1109/TPAMI.1985.4767641 [10] MA Xiaoshuang and WU Penghai. Multitemporal SAR image despeckling based on a scattering covariance matrix of image patch[J]. Sensors, 2019, 19(14): 3057. doi: 10.3390/s19143057 [11] BHUIYAN M I H, AHMAD M, and SWAMY M N S. Spatially adaptive wavelet-based method using the cauchy prior for denoising the SAR images[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2007, 17(4): 500–507. doi: 10.1109/TCSVT.2006.888020 [12] CHOI H and JEONG J. Speckle noise reduction technique for SAR images using statistical characteristics of speckle noise and discrete wavelet transform[J]. Remote Sensing, 2019, 11(10): 1184. doi: 10.3390/rs11101184 [13] GAO Fei, XUE Xiangshang, SUN Jinping, et al. A SAR image despeckling method based on two-dimensional S transform shrinkage[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(5): 3025–3034. doi: 10.1109/TGRS.2015.2510161 [14] YU Yongjian and ACTON S T. Speckle reducing anisotropic diffusion[J]. IEEE Transactions on Image Processing, 2002, 11(11): 1260–1270. doi: 10.1109/TIP.2002.804276 [15] ZHU Lei, ZHAO Xiaotian, and GU Meihua. SAR image despeckling using improved detail-preserving anisotropic diffusion[J]. Electronics Letters, 2014, 50(15): 1092–1093. doi: 10.1049/el.2014.0293 [16] MISHRA D, CHAUDHURY S, SARKAR M, et al. Edge probability and pixel relativity-based speckle reducing anisotropic diffusion[J]. IEEE Transactions on Image Processing, 2018, 27(2): 649–664. doi: 10.1109/TIP.2017.2762590 [17] BUADES A, COLL B, and MOREL J M. A non-local algorithm for image denoising[C]. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005: 60–65. doi: 10.1109/CVPR.2005.38. [18] PARRILLI S, PODERICO M, ANGELINO C V, et al. A nonlocal SAR image denoising algorithm based on LLMMSE wavelet shrinkage[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(2): 606–616. doi: 10.1109/TGRS.2011.2161586 [19] CHEN Shaobo, HOU Jianhua, ZHANG Hua, et al. De-speckling method based on non-local means and coefficient variation of SAR image[J]. Electronics Letters, 2014, 50(18): 1314–1316. doi: 10.1049/el.2014.0630 [20] 朱磊, 蔡飛飛, 王延年, 等. SAR圖像相干斑的非局部平均濾波算法[J]. 西安交通大學(xué)學(xué)報, 2018, 52(4): 98–104. doi: 10.7652/xjtuxb201804014ZHU Lei, CAI Feifei, WANG Yannian, et al. A non-local means filtering algorithm for despeckling of SAR images[J]. Journal of Xi’an Jiaotong University, 2018, 52(4): 98–104. doi: 10.7652/xjtuxb201804014 [21] FROST V S, STILES J A, SHANMUGAN K S, et al. A model for radar images and its application to adaptive digital filtering of multiplicative noise[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1982, PAMI-4(2): 157–165. doi: 10.1109/TPAMI.1982.4767223 [22] TOUZI R, LOPES A, and BOUSQUET P. A statistical and geometrical edge detector for SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 1988, 26(6): 764–773. doi: 10.1109/36.7708 [23] 朱磊, 水鵬朗, 章為川, 等. 利用區(qū)域劃分的合成孔徑雷達圖像相干斑抑制算法[J]. 西安交通大學(xué)學(xué)報, 2012, 46(10): 83–88, 100.ZHU Lei, SHUI Penglang, ZHANG Weichuan, et al. A despeckling algorithm for synthetic aperture radar images using region subdivision[J]. Journal of Xi’an Jiaotong University, 2012, 46(10): 83–88, 100. -