面向時(shí)延與可靠性優(yōu)化的服務(wù)功能鏈部署方法
doi: 10.11999/JEIT200023
-
1.
空軍工程大學(xué)研究生院 西安 710077
-
2.
空軍工程大學(xué)信息與導(dǎo)航學(xué)院 西安 710077
Service Function Chain Deployment Method for Delay and Reliability Optimization
-
1.
Graduate School, Aire Force Engineering University, Xi’an 710077, China
-
2.
Information and Navigation College, Aire Force Engineering University, Xi’an 710077, China
-
摘要: 針對5G網(wǎng)絡(luò)高可靠性、低時(shí)延的服務(wù)需求,該文提出一種面向時(shí)延與可靠性優(yōu)化的服務(wù)功能鏈(SFC)部署(DROSD)方法。在不預(yù)留冗余資源的情況下,首先通過功能互斥約束來確定SFC中相鄰虛擬網(wǎng)絡(luò)功能(VNF)是否可聚合;其次通過功能性約束、資源約束選擇可聚合物理節(jié)點(diǎn)集合,實(shí)現(xiàn)負(fù)載均衡,提高SFC可靠性;然后通過跳數(shù)約束進(jìn)行優(yōu)化,進(jìn)一步篩選可聚合物理節(jié)點(diǎn)集合以降低SFC的端到端時(shí)延;最后通過節(jié)點(diǎn)可用資源、節(jié)點(diǎn)度以及與原節(jié)點(diǎn)跳數(shù)指標(biāo)進(jìn)行降序排列,取最大值物理節(jié)點(diǎn)部署VNF。SFC的路由選擇,采用K-最短路徑算法。仿真實(shí)驗(yàn)表明,該文所提算法提高了請求接受率、長期平均收益開銷比,增強(qiáng)了SFC可靠性,降低了端到端時(shí)延,減小了平均帶寬開銷。
-
關(guān)鍵詞:
- 網(wǎng)絡(luò)功能虛擬化 /
- 服務(wù)功能鏈 /
- 虛擬網(wǎng)絡(luò)功能部署 /
- 可靠性 /
- 時(shí)延
Abstract: For the high reliability and low delay service requirements of 5G network, a Delay and Reliability Optimization of Service Function Chain (SFC) Deployment (DROSD) method is proposed. Without reservation of redundant resources, firstly, the function mutually exclusive constraints are used to determine whether the adjacent Virtual Network Function (VNF) in SFC can be combined; Secondly, functional constraints and resource constraints are used to select combinatorial physical node set to achieve load balancing and improve the reliability of SFC; Thirdly, the end-to-end delay of SFC is reduced by hop number constraints, and finally the VNF is deployed by the physical node with the maximum value, which is arranged in descending order through the available resources, node degree and hops from the original node. The routing of SFC adopts K-shortest path algorithm. The simulation results show that the proposed algorithm improves the request acceptance rate and the long-term average ratio of revenue to cost, enhances the reliability of SFC, reduces the end-to-end delay, and reduces the average bandwidth cost. -
表 1 算法1:DROSD算法VNF部署流程
輸入:${G^{\rm{s}}}$, $G_{\rm{v}}^g$ 輸出:VNF_Embedding_List 對于$G_{\rm{v}}^g$中的${\rm{SF}}{{\rm{C}}_g}$, (1) 獲取${\rm{SF}}{{\rm{C}}_g}$的VNF數(shù)目K for k=1:K-1 利用深度優(yōu)先,對可靠性進(jìn)行優(yōu)化,判斷相鄰VNF是否滿
足功能互斥約束if $P_{k,k + 1}^g = 0$ 對時(shí)延進(jìn)行優(yōu)化,利用算法2選取可部署物理節(jié)點(diǎn)集合
${M_1}$, ${M_2}$(2) if ${M_1}{\rm{ = } }\varnothing$ 部署失敗 else if ${M_2}{\rm{ = } }\varnothing$ 部署失敗 else 計(jì)算節(jié)點(diǎn)$Im$值,取最大值節(jié)點(diǎn)部署${f_k}$ end end else 對可靠性和時(shí)延進(jìn)行優(yōu)化,利用算法3選取可聚合物理節(jié)點(diǎn)集合$M_1'$, $M_2'$ if $M_1'{\rm{ = } }\varnothing$ 聚合失敗 返回步驟(2) else if $M_2'{\rm{ = } }\varnothing$ 聚合失敗 返回步驟(2) else 計(jì)算節(jié)點(diǎn)$Im$值,取最大值節(jié)點(diǎn)部署${f_k}$, ${f_{k{\rm{ + }}1}}$ end end end 下載: 導(dǎo)出CSV
表 2 算法2:可部署物理節(jié)點(diǎn)選取流程
任意 ${f_k}$, ${w_i}$ for 未部署${\rm{SF}}{{\rm{C}}_g}$中VNF的所有物理節(jié)點(diǎn)$N_1^{\rm{s}}$ 選擇滿足功能性約束的物理節(jié)點(diǎn) if $F_n^{{f_k},{w_i}}{\rm{ = }}1$ 選擇滿足資源約束的物理節(jié)點(diǎn),實(shí)現(xiàn)負(fù)載均衡。 if $C_{n,{\rm{ava} } }^{\rm{s}} \ge C_{g,k}^{\rm{v}}{\rm{\& \& } }F_{n,{\rm{ava} } }^s \ge F_{g,k}^{\rm{v}}{\rm{\& \& } }{h_{ {S_1},n} } \le {h_0}$ $n \in {M_1}$ 利用與目的節(jié)點(diǎn)的跳數(shù)約束進(jìn)一步優(yōu)化時(shí)延 if ${h_{ {S_1},{D_g} } } \ge {h_{n,{D_g} } }$ $n \in {M_2}$ end end end end 下載: 導(dǎo)出CSV
表 3 算法3:可聚合物理節(jié)點(diǎn)選取流程
任意${f_k}$, ${w_i}$和${f_{k{\rm{ + }}1}},{w_j}$ for 未部署${\rm{SF}}{{\rm{C}}_g}$中VNF的所有物理節(jié)點(diǎn)$N_1^{\rm{s}}$ 對可靠性進(jìn)行優(yōu)化,選擇滿足${f_k}$,${f_{k{\rm{ + }}1}}$功能性約束的物理節(jié)點(diǎn) if $F_n^{{f_k},{w_i}}{\rm{ = }}1{\rm{\& \& }}F_n^{{f_{k{\rm{ + }}1}},{w_j}}{\rm{ = }}1$ 選擇滿足資源約束的物理節(jié)點(diǎn),實(shí)現(xiàn)負(fù)載均衡。 if $C_{n,{\rm{ava} } }^{\rm{s} } \ge (C_{g,k}^{\rm{v} } \!+\! C_{g,k{\rm{ + } }1}^{\rm{v} }){\rm{\& \& } }F_{n,{\rm{ava} } }^{\rm{s} } \ge (F_{g,k}^{\rm{v}} \!+\! F_{g,k + 1}^{\rm{v} }){\rm{\& \& } }$
$ {h_{ {S_1},n} } \le {h_1} $$n \in M_1'$ 利用與目的節(jié)點(diǎn)的跳數(shù)約束進(jìn)一步優(yōu)化時(shí)延 if ${h_{ {S_1},D} } \ge {h_{n,D} }$ $n \in M_2'$ end end end end 下載: 導(dǎo)出CSV
-
QI Dandan, SHEN Subin, WANG Guanghui, et al. Towards an efficient VNF placement in network function virtualization[J]. Computer Communications, 2019, 138: 81–89. doi: 10.1016/j.comcom.2019.03.005 YI Bo, WANG Xingwei, LI Keqin, et al. A comprehensive survey of network function virtualization[J]. Computer Networks, 2018, 133: 212–262. doi: 10.1016/j.comnet.2018.01.021 MIAO Wang, MIN Geyong, WU Yulei, et al. Stochastic performance analysis of network function virtualization in future internet[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(3): 613–626. doi: 10.1109/JSAC.2019.2894304 SUN Gang, LIAO Dan, ZHAO Dongcheng, et al. Towards provisioning hybrid virtual networks in federated cloud data centers[J]. Future Generation Computer Systems, 2018, 87: 457–469. doi: 10.1016/j.future.2017.09.065 湯紅波, 邱航, 游偉, 等. 基于聯(lián)合備份的服務(wù)功能鏈可靠性保障的部署方法[J]. 電子與信息學(xué)報(bào), 2019, 41(12): 3006–3013. doi: 10.11999/JEIT190013TANG Hongbo, QIU Hang, YOU Wei, et al. A reliability-guarantee method for service function chain deployment based on joint backup[J]. Journal of Electronics &Information Technology, 2019, 41(12): 3006–3013. doi: 10.11999/JEIT190013 SUN Gang, CHEN Zhenrong, YU Hongfang, et al. Online parallelized service function chain orchestration in data center networks[J]. IEEE Access, 2019, 7: 100147–100161. doi: 10.1109/ACCESS.2019.2930295 唐倫, 楊恒, 馬潤琳, 等. 基于5G接入網(wǎng)絡(luò)的多優(yōu)先級虛擬網(wǎng)絡(luò)功能遷移開銷與網(wǎng)絡(luò)能耗聯(lián)合優(yōu)化算法[J]. 電子與信息學(xué)報(bào), 2019, 41(9): 2079–2086. doi: 10.11999/JEIT180906TANG Lun, YANG Heng, MA Runlin, et al. Multi-priority based joint optimization algorithm of virtual network function migration cost and network energy consumption[J]. Journal of Electronics &Information Technology, 2019, 41(9): 2079–2086. doi: 10.11999/JEIT180906 CHENG Xiangle, WU Yulei, Min Geyong, et al. Network function virtualization in dynamic networks: A stochastic perspective[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(10): 2218–2232. doi: 10.1109/JSAC.2018.2869958 ERAMO V, MIUCCI E, AMMAR M, et al. An approach for service function chain routing and virtual function network instance migration in network function virtualization architectures[J]. IEEE/ACM Transactions on Networking, 2017, 25(4): 2008–2025. doi: 10.1109/TNET.2017.2668470 RAAYATPANAH M A and WEISE T. Virtual network function placement for service function chaining with minimum energy consumption[C]. 2018 IEEE International Conference on Computer and Communication Engineering Technology (CCET), Beijing, China, 2018: 198–202. 唐倫, 趙培培, 趙國繁, 等. 基于QoS保障的服務(wù)功能鏈動態(tài)部署算法[J]. 北京郵電大學(xué)學(xué)報(bào), 2018, 41(6): 90–96. doi: 10.13190/j.jbupt.2018-013TANG Lun, ZHAO Peipei, ZHAO Guofan, et al. Dynamic deployment algorithm for service function chaining with QoS guarantee[J]. Journal of Beijing University of Posts and Telecommunications, 2018, 41(6): 90–96. doi: 10.13190/j.jbupt.2018-013 HERKER S, AN Xueli, KIESS W, et al. Data-center architecture impacts on virtualized network functions service chain embedding with high availability requirements[C]. 2015 IEEE Globecom Workshops (GC Wkshps), San Diego, USA, 2015: 1–7. QU Long, KHABBAZ M, and ASSI C. Reliability-aware service chaining in carrier-grade softwarized networks[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(3): 558–573. doi: 10.1109/JSAC.2018.2815338 TANG Lun, ZHAO Guofan, WANG Chenmeng, et al. Queue-aware reliable embedding algorithm for 5G network slicing[J]. Computer Networks, 2018, 146: 138–150. doi: 10.1016/j.comnet.2018.09.014 ZHAO Dongcheng, REN Jing, LIN Rongping, et al. On orchestrating service function Chains in 5G mobile network[J]. IEEE Access, 2019, 7: 39402–39416. doi: 10.1109/ACCESS.2019.2895316 -