ADS-B攻擊數(shù)據(jù)彈性恢復(fù)方法
doi: 10.11999/JEIT191020
-
1.
空軍工程大學(xué)信息與導(dǎo)航學(xué)院 西安 710077
-
2.
國(guó)防科技大學(xué)信息通信學(xué)院 西安 710106
A Resilient Recovery Method on ADS-B Attack Data
-
1.
College of Information and Navigation, Air Force Engineering University, Xi’an 710077, China
-
2.
School of Information and Communications, National University of Defense Technology, Xi’an 710106, China
-
摘要: 為了對(duì)自動(dòng)廣播相關(guān)監(jiān)視(ADS-B)攻擊數(shù)據(jù)進(jìn)行彈性恢復(fù),確保空情態(tài)勢(shì)感知信息的持續(xù)可用性,該文提出針對(duì)ADS-B攻擊數(shù)據(jù)的彈性恢復(fù)方法。基于前置的攻擊檢測(cè)機(jī)制,獲取當(dāng)前ADS-B量測(cè)數(shù)據(jù)序列和預(yù)測(cè)數(shù)據(jù)序列,并在此基礎(chǔ)上構(gòu)建偏差數(shù)據(jù)序列、差分?jǐn)?shù)據(jù)序列和鄰近密度數(shù)據(jù)序列。依托偏差數(shù)據(jù)構(gòu)建恢復(fù)向量,依托差分?jǐn)?shù)據(jù)挖掘攻擊數(shù)據(jù)的時(shí)序特性,依托鄰近密度數(shù)據(jù)挖掘攻擊數(shù)據(jù)的空間特性。通過整合3種數(shù)據(jù)序列構(gòu)建彈性恢復(fù)策略并確定恢復(fù)終止點(diǎn),實(shí)現(xiàn)對(duì)攻擊影響的弱化,將ADS-B攻擊數(shù)據(jù)向正常數(shù)據(jù)方向進(jìn)行定向恢復(fù)。通過對(duì)6種典型攻擊樣式的實(shí)驗(yàn)分析,證明該彈性恢復(fù)方法能夠有效恢復(fù)ADS-B攻擊數(shù)據(jù),削弱數(shù)據(jù)攻擊對(duì)監(jiān)視系統(tǒng)的影響。
-
關(guān)鍵詞:
- 空管監(jiān)視 /
- 自動(dòng)廣播相關(guān)監(jiān)視 /
- 數(shù)據(jù)安全 /
- 攻擊檢測(cè) /
- 彈性恢復(fù)
Abstract: In order to conduct effective resilient recovery on Automatic Dependent Surveillance-Broadcast (ADS-B) attack data and ensure the continuous availability of air traffic situation awareness, a resilient recovery method on ADS-B attack data is proposed. Based on attack detection strategies, the measurement and prediction sequences of ADS-B data are obtained to set up deviation data, differential data and neighbor density data sequences, which are designed to construct recovery vectors, mine the temporal correlations and the spatial correlations respectively. The selected data sequences are integrated to accomplish the whole recovery method and decide the end point of recovery. The method is applied to elinimating attack effects and recovering the attack data towards normal data. According to the results of experiments on six classical attack patterns, the proposed method is effective on recovering attack data and eliminating the attack impacts. -
表 1 構(gòu)造的典型攻擊樣式
編號(hào) 攻擊模式 攻擊影響 ATK-1 常量偏差注入攻擊 針對(duì)ADS-B多屬性數(shù)據(jù)注入常量偏差 ATK-2 隨機(jī)偏差注入攻擊 針對(duì)ADS-B多屬性數(shù)據(jù)注入隨機(jī)偏差 ATK-3 增量偏差注入攻擊 針對(duì)ADS-B多屬性數(shù)據(jù)注入增量偏差 ATK-4 航跡替換攻擊 針對(duì)特定時(shí)間窗口內(nèi)的航跡進(jìn)行替換 ATK-5 航跡重放攻擊 在特定時(shí)間長(zhǎng)度下實(shí)現(xiàn)航跡重放 ATK-6 飛行器泛洪攻擊 向當(dāng)前空域態(tài)勢(shì)中注入大量幽靈飛行器目標(biāo) 下載: 導(dǎo)出CSV
-
STROHMEIER M, SCH?FER M, PINHEIRO R, et al. On perception and reality in wireless air traffic communication security[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(6): 1338–1357. doi: 10.1109/tits.2016.2612584 WANG Wenyi, WU Renbiao, and LIANG Junli. ADS-B signal separation based on blind adaptive beamforming[J]. IEEE Transactions on Vehicular Technology, 2019, 68(7): 6547–6556. doi: 10.1109/TVT.2019.2914233 SUN Junzi, V? H, ELLERBROEK J, et al. pyModeS: Decoding mode-S surveillance data for open air transportation research[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(7): 2777–2786. doi: 10.1109/TITS.2019.2914770 STROHMEIER M, SCH?FER M, LENDERS V, et al. Realities and challenges of NextGen air traffic management: The case of ADS-B[J]. IEEE Communications Magazine, 2014, 52(5): 111–118. doi: 10.1109/MCOM.2014.6815901 STROHMEIER M, LENDERS V, and MARTINOVIC I. On the security of the automatic dependent surveillance-broadcast protocol[J]. IEEE Communications Surveys & Tutorials, 2015, 17(2): 1066–1087. doi: 10.1109/comst.2014.2365951 MANESH M R and KAABOUCH N. Analysis of vulnerabilities, attacks, countermeasures and overall risk of the automatic dependent surveillance-broadcast (ADS-B) system[J]. International Journal of Critical Infrastructure Protection, 2017, 19: 16–31. doi: 10.1016/j.ijcip.2017.10.002 錢亞冠, 盧紅波, 紀(jì)守領(lǐng), 等. 基于粒子群優(yōu)化的對(duì)抗樣本生成算法[J]. 電子與信息學(xué)報(bào), 2019, 41(7): 1658–1665. doi: 10.11999/JEIT180777QIAN Yaguan, LU Hongbo, JI Shouling, et al. Adversarial example generation based on particle swarm optimization[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1658–1665. doi: 10.11999/JEIT180777 SCH?FER M, LENDERS V, and MARTINOVIC I. Experimental analysis of attacks on next generation air traffic communication[C]. The 11th International Conference on Applied Cryptography and Network Security, Berlin, Germany, 2013: 253–271. doi: 10.1007/978-3-642-38980-1_16. COSTIN A and FRANCILLON A. Ghost in the air (traffic): On insecurity of ADS-B protocol and practical attacks on ADS-B devices[C]. Black Hat, Las Vegas, USA, 2012: 1–10. 陳紅松, 陳京九. 基于循環(huán)神經(jīng)網(wǎng)絡(luò)的無(wú)線網(wǎng)絡(luò)入侵檢測(cè)分類模型構(gòu)建與優(yōu)化研究[J]. 電子與信息學(xué)報(bào), 2019, 41(6): 1427–1433. doi: 10.11999/JEIT180691CHEN Hongsong and CHEN Jingjiu. Recurrent neural networks based wireless network intrusion detection and classification model construction and optimization[J]. Journal of Electronics &Information Technology, 2019, 41(6): 1427–1433. doi: 10.11999/JEIT180691 YING Xuhang, MAZER J, BERNIERI G, et al. Detecting ADS-B spoofing attacks using deep neural networks[C]. 2019 IEEE Conference on Communications and Network Security, Washington, USA, 2019: 187–195. doi: 10.1109/CNS.2019.8802732. HABLER E and SHABTAI A. Using LSTM encoder-decoder algorithm for detecting anomalous ADS-B messages[J]. Computers & Security, 2018, 78: 155–173. doi: 10.1016/j.cose.2018.07.004 丁建立, 鄒云開, 王靜, 等. 基于深度學(xué)習(xí)的ADS-B異常數(shù)據(jù)檢測(cè)模型[J]. 航空學(xué)報(bào), 2019, 40(12): 323220. doi: 10.7527/S1000-6893.2019.23220DING Jianli, ZOU Yunkai, WANG Jing, et al. ADS-B anomaly data detection model based on deep learning[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(12): 323220. doi: 10.7527/S1000-6893.2019.23220 LI Tengyao, WANG Buhong, SHANG Fute, et al. Online sequential attack detection for ADS-B data based on hierarchical temporal memory[J]. Computers & Security, 2019, 87: 101599. doi: 10.1016/j.cose.2019.101599 ZHANG Tao, WU Renbiao, LAI Ran, et al. Probability hypothesis density filter for radar systematic bias estimation aided by ADS-B[J]. Signal Processing, 2016, 120: 280–287. doi: 10.1016/j.sigpro.2015.09.012 SMITH M, STROHMEIER M, HARMAN J, et al. Safety vs. security: Attacking avionic systems with humans in the loop[J]. arXiv, 2019, 1905.08039. STROHMEIER M, MARTINOVIC I, FUCHS M, et al. Opensky: A swiss army knife for air traffic security research[C]. The 34th IEEE/AIAA Digital Avionics Systems Conference, Prague, Czech Republic, 2015: 1–14. doi: 10.1109/DASC.2015.7311411. -