一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標(biāo)題
留言內(nèi)容
驗證碼

基于多尺度和注意力融合學(xué)習(xí)的行人重識別

王粉花 趙波 黃超 嚴(yán)由齊

王粉花, 趙波, 黃超, 嚴(yán)由齊. 基于多尺度和注意力融合學(xué)習(xí)的行人重識別[J]. 電子與信息學(xué)報, 2020, 42(12): 3045-3052. doi: 10.11999/JEIT190998
引用本文: 王粉花, 趙波, 黃超, 嚴(yán)由齊. 基于多尺度和注意力融合學(xué)習(xí)的行人重識別[J]. 電子與信息學(xué)報, 2020, 42(12): 3045-3052. doi: 10.11999/JEIT190998
Fenhua WANG, Bo ZHAO, Chao HUANG, Youqi YAN. Person Re-identification Based on Multi-scale Network Attention Fusion[J]. Journal of Electronics & Information Technology, 2020, 42(12): 3045-3052. doi: 10.11999/JEIT190998
Citation: Fenhua WANG, Bo ZHAO, Chao HUANG, Youqi YAN. Person Re-identification Based on Multi-scale Network Attention Fusion[J]. Journal of Electronics & Information Technology, 2020, 42(12): 3045-3052. doi: 10.11999/JEIT190998

基于多尺度和注意力融合學(xué)習(xí)的行人重識別

doi: 10.11999/JEIT190998
基金項目: 國家重點研發(fā)計劃重點專項(2017YFB1400101-01),北京科技大學(xué)中央高?;究蒲袠I(yè)務(wù)費專項 (FRF-BD-19-002A)
詳細(xì)信息
    作者簡介:

    王粉花:女,1971年生,副教授,碩士生導(dǎo)師,研究方向為模式識別和智能信息處理

    趙波:男,1994年生,碩士生,研究方向為計算機視覺

    黃超:男,1993年生,碩士生,研究方向為計算機視覺

    嚴(yán)由齊:男,1997年生,碩士生,研究方向為計算機視覺

    通訊作者:

    王粉花 wangfenhua@ustb.edu.cn

  • 中圖分類號: TN911.73; TP391

Person Re-identification Based on Multi-scale Network Attention Fusion

Funds: The Key Projects of National Key R & D Plan (2017YFB1400101-01), Beijing University of Science and Technology Central University Basic Research Business Expenses (FRF-BD-19-002A)
  • 摘要: 行人重識別的關(guān)鍵依賴于行人特征的提取,卷積神經(jīng)網(wǎng)絡(luò)具有強大的特征提取以及表達(dá)能力。針對不同尺度下可以觀察到不同的特征,該文提出一種基于多尺度和注意力網(wǎng)絡(luò)融合的行人重識別方法(MSAN)。該方法通過對網(wǎng)絡(luò)不同深度的特征進(jìn)行采樣,將采樣的特征融合后對行人進(jìn)行預(yù)測。不同深度的特征圖具有不同的表達(dá)能力,使網(wǎng)絡(luò)可以學(xué)習(xí)到行人身上更加細(xì)粒度的特征。同時將注意力模塊嵌入到殘差網(wǎng)絡(luò)中,使得網(wǎng)絡(luò)能更加關(guān)注于一些關(guān)鍵信息,增強網(wǎng)絡(luò)特征學(xué)習(xí)能力。所提方法在Market1501, DukeMTMC-reID和MSMT17_V1數(shù)據(jù)集上首位準(zhǔn)確率分別到了95.3%, 89.8%和82.2%。實驗表明,該方法充分利用了網(wǎng)絡(luò)不同深度的信息和關(guān)注的關(guān)鍵信息,使模型具有很強的判別能力,而且所提模型的平均準(zhǔn)確率優(yōu)于大多數(shù)先進(jìn)算法。
  • 圖  1  多尺度和注意力融合模型框架圖

    圖  2  ResNet50網(wǎng)絡(luò)架構(gòu)圖

    圖  3  Conv2_x模塊架構(gòu)圖

    圖  4  多尺度結(jié)構(gòu)圖

    圖  5  CBAM模塊圖

    圖  6  3元組損失

    表  1  多尺度融合模型準(zhǔn)確率驗證實驗結(jié)果(%)

    方法Market1501DukeMTMC-reIDMSMT17_V1
    Rank-1mAPRank-1mAPRank-1mAP
    SSAN94.987.986.167.781.466.3
    SSAN(+RK)95.393.786.075.684.673.8
    MSAN95.387.989.878.882.260.6
    MSAN (+RK)95.993.992.389.785.074.6
    下載: 導(dǎo)出CSV

    表  2  CBAM模塊準(zhǔn)確率驗證實驗結(jié)果(%)

    方法Market1501DukeMTMC-reIDMSMT17_V1
    Rank-1mAPRank-1mAPRank-1mAP
    MSN94.486.287.577.279.656.0
    MSN (+CBAM)95.387.989.878.882.260.6
    MSN(+RK)95.393.190.989.283.272.0
    MSN(+CBAM+RK)95.993.992.389.785.074.6
    下載: 導(dǎo)出CSV

    表  3  所提MSAN算法與其他先進(jìn)算法的準(zhǔn)確率對比(%)

    方法Market1501DukeMTMC-reIDMSMT17_V1
    Rank-1mAPRank-1mAPRank-1mAP
    SVDNet[21]82.362.176.756.8
    DPFL[22]88.672.679.260.0
    SVDNet+Era[23]87.171.379.362.4
    TriNET+Era[23]83.968.773.056.6
    DaRe[24]89.076.080.264.5
    GP-reid[25]92.281.285.272.8
    PCB[4]92.377.481.965.368.240.4
    Aligned-ReID[5]92.682.3
    PCB+RPP[4]93.881.683.369.2
    MGN[6]95.786.988.778.4
    BFENET[8]94.284.386.872.1
    IANet[18]94.483.187.173.475.546.8
    DGNet[19]94.886.086.674.877.252.3
    OSNet[20]94.884.988.673.578.752.9
    MSAN95.387.989.878.882.260.6
    MSAN(+RK)95.993.992.389.785.074.6
    下載: 導(dǎo)出CSV
  • FARENZENA M, BAZZANI L, PERINA A, et al. Person re-identification by symmetry-driven accumulation of local features[C]. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 2360–2367.
    周智恒, 劉楷怡, 黃俊楚, 等. 一種基于等距度量學(xué)習(xí)策略的行人重識別改進(jìn)算法[J]. 電子與信息學(xué)報, 2019, 41(2): 477–483. doi: 10.11999/JEIT180336

    ZHOU Zhiheng, LIU Kaiyi, HUANG Junchu, et al. Improved metric learning algorithm for person re-identification based on equidistance[J]. Journal of Electronics &Information Technology, 2019, 41(2): 477–483. doi: 10.11999/JEIT180336
    HIRZER M, ROTH P M, K?STINGER M, et al. Relaxed pairwise learned metric for person re-identification[C]. The 12th European Conference on Computer Vision, Florence, Italy, 2012: 780–793.
    SUN Yifan, ZHENG Liang, YANG Yi, et al. Beyond part models: Person retrieval with refined part pooling (and a strong convolutional baseline)[C]. The 15th European Conference on Computer Vision (ECCV), Munich, Germany, 2018: 480–496.
    LUO Hao, JIANG Wei, ZHANG Xuan, et al. AlignedReID++: Dynamically matching local information for person re-identification[J]. Pattern Recognition, 2019, 94: 53–61. doi: 10.1016/j.patcog.2019.05.028
    WANG Guanshuo, YUAN Yufeng, CHEN Xiong, et al. Learning discriminative features with multiple granularities for person re-identification[C]. 2018 ACM Multimedia Conference on Multimedia Conference, Seoul, Korea, 2018: 274–282.
    陳鴻昶, 吳彥丞, 李邵梅, 等. 基于行人屬性分級識別的行人再識別[J]. 電子與信息學(xué)報, 2019, 41(9): 2239–2246. doi: 10.11999/JEIT180740

    CHEN Hongchang, WU Yancheng, LI Shaomei, et al. Person re-identification based on attribute hierarchy recognition[J]. Journal of Electronics &Information Technology, 2019, 41(9): 2239–2246. doi: 10.11999/JEIT180740
    DAI Zuozhuo, CHEN Mingqiang, GU Xiaodong, et al. Batch DropBlock network for person re-identification and beyond[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 2019: 3691–3701.
    WOO S, PARK J, LEE J Y, et al. Cbam: Convolutional block attention module[C]. The 15th European Conference on Computer Vision (ECCV), Munich, Germany, 2018: 3–19.
    LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. 2017 IEEE conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 2117–2125.
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
    HERMANS A, BEYER L, and LEIBE B. In defense of the triplet loss for person re-identification[EB/OL]. https://arxiv.org/abs/1703.07737, 2017.
    ZHENG Liang, SHEN Liyue, TIAN Lu, et al. Scalable person re-identification: A benchmark[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1116–1124.
    RISTANI E, SOLERA F, ZOU R, et al. Performance measures and a data set for multi-target, multi-camera tracking[C]. 2016 European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 17–35.
    WEI Longhui, ZHANG Shiliang, GAO Wen, et al. Person transfer GAN to bridge domain gap for person re-identification[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 79–88.
    ZHONG Zhun, ZHENG Liang, CAO Donglin, et al. Re-ranking person re-identification with k-reciprocal encoding[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 1318–1327.
    SALLEH S S, AZIZ N A A, MOHAMAD D, et al. Combining mahalanobis and jaccard distance to overcome similarity measurement constriction on geometrical shapes[J]. International Journal of Computer Science Issues, 2012, 9(4): 124–132.
    ZHENG Zhedong, YANG Xiaodong, YU Zhiding, et al. Joint discriminative and generative learning for person re-identification[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 2138–2147.
    HOU Ruibing, MA Bingpeng, CHANG Hong, et al. Interaction-and-aggregation network for person re-identification[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 9317–9326.
    ZHOU Kaiyang, YANG Yongxin, CAVALLARO A, et al. Omni-Scale feature learning for person re-identification[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 2019: 3702–3712.
    SUN Yifan, ZHENG Liang, DENG Weijian, et al. SVDNet for pedestrian retrieval[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 3800–3808.
    CHEN Yanbei, ZHU Xiatian, and GONG Shaogang. Person re-identification by deep learning multi-scale representations[C]. 2017 IEEE International Conference on Computer Vision Workshops, Venice, Italy, 2017: 2590–2600.
    ZHONG Zhun, ZHENG Liang, KANG Guoliang, et al. Random erasing data augmentation[EB/OL]. https://arxiv.org/abs/1708.04896, 2017.
    WANG Yan, WANG Lequn, YOU Yurong, et al. Resource aware person re-identification across multiple resolutions[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 8042–8051.
    ALMAZAN J, GAJIC B, MURRAY N, et al. Re-ID done right: towards good practices for person re-identification[EB/OL]. https://arxiv.org/abs/1801.05339, 2018.
  • 加載中
圖(6) / 表(3)
計量
  • 文章訪問數(shù):  2818
  • HTML全文瀏覽量:  1107
  • PDF下載量:  248
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-12-13
  • 修回日期:  2020-06-17
  • 網(wǎng)絡(luò)出版日期:  2020-07-20
  • 刊出日期:  2020-12-08

目錄

    /

    返回文章
    返回