一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于深度哈希算法的極光圖像分類與檢索方法

陳昌紅 彭騰飛 干宗良

陳昌紅, 彭騰飛, 干宗良. 基于深度哈希算法的極光圖像分類與檢索方法[J]. 電子與信息學(xué)報, 2020, 42(12): 3029-3036. doi: 10.11999/JEIT190984
引用本文: 陳昌紅, 彭騰飛, 干宗良. 基于深度哈希算法的極光圖像分類與檢索方法[J]. 電子與信息學(xué)報, 2020, 42(12): 3029-3036. doi: 10.11999/JEIT190984
Changhong CHEN, Tengfei PENG, Zongliang GAN. Aurora Image Classification and Retrieval Method Based on Deep Hashing Algorithm[J]. Journal of Electronics & Information Technology, 2020, 42(12): 3029-3036. doi: 10.11999/JEIT190984
Citation: Changhong CHEN, Tengfei PENG, Zongliang GAN. Aurora Image Classification and Retrieval Method Based on Deep Hashing Algorithm[J]. Journal of Electronics & Information Technology, 2020, 42(12): 3029-3036. doi: 10.11999/JEIT190984

基于深度哈希算法的極光圖像分類與檢索方法

doi: 10.11999/JEIT190984
基金項(xiàng)目: 國家自然科學(xué)基金(61501260),江蘇省研究生科研與實(shí)踐創(chuàng)新計劃(KYCX17_0776)
詳細(xì)信息
    作者簡介:

    陳昌紅:女,1982年生,副教授,研究方向?yàn)橹悄芤曨l分析、模式識別

    彭騰飛:男,1994年生,碩士生,研究方向?yàn)閳D像處理與圖像通信

    干宗良:男,1978年生,副教授,研究方向?yàn)榉植际揭曨l編碼、圖像信號視頻處理

    通訊作者:

    陳昌紅 chenchh@njupt.edu.cn

  • 中圖分類號: TN911.73

Aurora Image Classification and Retrieval Method Based on Deep Hashing Algorithm

Funds: The National Natural Science Foundation of China (61501260), The Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX17_0776)
  • 摘要: 面對形態(tài)萬千、變化復(fù)雜的海量極光數(shù)據(jù),對其進(jìn)行分類與檢索為進(jìn)一步研究地球磁場物理機(jī)制和空間信息具有重要意義。該文基于卷積神經(jīng)網(wǎng)絡(luò)(CNN)對圖像特征提取方面的良好表現(xiàn),以及哈希編碼可以滿足大規(guī)模圖像檢索對檢索時間的要求,提出一種端到端的深度哈希算法用于極光圖像分類與檢索。首先在CNN中嵌入空間金字塔池化(SPP)和冪均值變換(PMT)來提取圖像中多種尺度的區(qū)域信息;其次在全連接層之間加入哈希層,將全連接層最能表現(xiàn)圖像的高維語義信息映射為緊湊的二值哈希碼,并在低維空間使用漢明距離對圖像對之間的相似性進(jìn)行度量;最后引入多任務(wù)學(xué)習(xí)機(jī)制,充分利用圖像標(biāo)簽信息和圖像對之間的相似度信息來設(shè)計損失函數(shù),聯(lián)合分類層和哈希層的損失作為優(yōu)化目標(biāo),使哈希碼之間可以保持更好的語義相似性,有效提升了檢索性能。在極光數(shù)據(jù)集和 CIFAR-10 數(shù)據(jù)集上的實(shí)驗(yàn)結(jié)果表明,所提出方法檢索性能優(yōu)于其他現(xiàn)有檢索方法,同時能夠有效用于極光圖像分類。
  • 圖  1  本文算法的訓(xùn)練和測試框圖

    圖  2  空間金字塔池化示意圖

    圖  3  4類極光類型圖像

    圖  4  3種方法的MAP, P-R以及Top-k 檢索返回的準(zhǔn)確率曲線

    圖  5  3種方法在哈希碼長度為48 bit時的四分類混淆矩陣

    圖  6  不同哈希算法在CIFAR-10數(shù)據(jù)集上MAP, P-R以及Top-k 檢索返回的準(zhǔn)確率曲線

    表  1  有無哈希層損失兩種方法對比

    方法MAP準(zhǔn)確率
    不考慮哈希層損失0.75630.8705
    考慮哈希層損失0.85540.9073
    下載: 導(dǎo)出CSV

    表  2  有無SPP_PMT層兩種方法對比

    方法MAP準(zhǔn)確率
    不加SPP_PMT0.85540.9073
    加入SPP_PMT0.89630.9367
    下載: 導(dǎo)出CSV

    表  3  3種方法的MAP以及在bit=48下模型參數(shù)大小(MB)和訓(xùn)練時間(min)

    方法不同哈希碼長度(bit)下的MAP參數(shù)大小訓(xùn)練時間
    12243248
    AlexNet0.83360.84500.85180.8554218.20158
    AlexNet-SP0.87290.90040.90660.8963179.15115
    Im-AlexNet-SP0.89950.90720.91730.9095100.7780
    下載: 導(dǎo)出CSV

    表  4  3種方法在不同哈希碼長度下的準(zhǔn)確率

    方法不同哈希碼長度(bit)下的準(zhǔn)確率
    12243248
    AlexNet0.89640.89950.89880.9073
    AlexNet-SP0.93120.92980.93250.9367
    Im-AlexNet-SP0.93200.93050.94100.9384
    下載: 導(dǎo)出CSV

    表  5  本文方法與其他極光檢索算法的MAP以及平均查詢時間對比(s)

    方法MAP平均查詢時間
    HE0.52530.65
    VLAD0.58680.52
    MAC0.65581.22
    MS-RMAC0.69012.89
    本文Im-AlexNet-SP0.90950.43
    下載: 導(dǎo)出CSV

    表  6  不同哈希算法在CIFAR-10不同哈希碼長度下的MAP

    方法不同哈希碼長度(bit)下的MAP
    12243248
    本文Im-AlexNet-SP0.9020.9040.9120.907
    DPSH0.7130.7270.7440.757
    DSH0.6730.6850.6900.694
    CNNH0.4390.5110.5090.522
    KSH0.3030.3370.3460.356
    ITQ0.1620.1690.1720.175
    LSH0.1270.1370.1410.149
    下載: 導(dǎo)出CSV
  • WANG Qian, LIANG Jimin, HU Zejun, et al. Spatial texture based automatic classification of dayside aurora in all-sky images[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2010, 72(5/6): 498–508. doi: 10.1016/j.jastp.2010.01.011
    韓冰, 楊辰, 高新波. 融合顯著信息的LDA極光圖像分類[J]. 軟件學(xué)報, 2013, 24(11): 2758–2766. doi: 10.3724/SP.J.1001.2013.04481

    HAN Bing, YANG Chen, and GAO Xinbo. Aurora image classification based on LDA combining with saliency information[J]. Journal of Software, 2013, 24(11): 2758–2766. doi: 10.3724/SP.J.1001.2013.04481
    SYRJ?SUO M T, DONOVAN E F, and COGGER L L. Content-based retrieval of auroral images - thousands of irregular shapes[C]. The 4th IASTED International Conference Visualization, Imaging, and Image Processing, Marbella, Spain, 2004.
    FU Rong, GAO Xinbo, LI Xuelong, et al. An integrated aurora image retrieval system: Aurora Eye[J]. Journal of Visual Communication and Image Representation, 2010, 21(8): 787–797. doi: 10.1016/j.jvcir.2010.06.002
    YANG Xi, GAO Xinbo, SONG Bin, et al. Aurora image search with contextual CNN feature[J]. Neurocomputing, 2018, 281: 67–77. doi: 10.1016/j.neucom.2017.11.059
    葛蕓, 馬琳, 江順亮, 等. 基于高層特征圖組合及池化的高分辨率遙感圖像檢索[J]. 電子與信息學(xué)報, 2019, 41(10): 2487–2494. doi: 10.11999/JEIT190017

    GE Yun, MA Lin, JIANG Shunliang, et al. The combination and pooling based on high-level feature map for high-resolution remote sensing image retrieval[J]. Journal of Electronics &Information Technology, 2019, 41(10): 2487–2494. doi: 10.11999/JEIT190017
    劉冶, 潘炎, 夏榕楷, 等. FP-CNNH: 一種基于深度卷積神經(jīng)網(wǎng)絡(luò)的快速圖像哈希算法[J]. 計算機(jī)科學(xué), 2016, 43(9): 39–46, 51. doi: 10.11896/j.issn.1002-137X.2016.09.007

    LIU Ye, PAN Yan, XIA Rongkai, et al. FP-CNNH: A fast image hashing algorithm based on deep convolutional neural network[J]. Computer Science, 2016, 43(9): 39–46, 51. doi: 10.11896/j.issn.1002-137X.2016.09.007
    LI Wujun, WANG Sheng, and KANG Wangcheng. Feature learning based deep supervised hashing with pairwise labels[C]. The 25th International Joint Conference on Artificial Intelligence, New York, USA, 2016: 1711–1717.
    LIU Haomiao, WANG Ruiping, SHAN Shiguang, et al. Deep supervised hashing for fast image retrieval[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 2064–2072. doi: 10.1109/CVPR.2016.227.
    KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. Imagenet classification with deep convolutional neural networks[C]. The 25th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2012: 1097–1105.
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904–1916. doi: 10.1109/TPAMI.2015.2389824
    趙斐, 張文凱, 閆志遠(yuǎn), 等. 基于多特征圖金字塔融合深度網(wǎng)絡(luò)的遙感圖像語義分割[J]. 電子與信息學(xué)報, 2019, 41(10): 2525–2531. doi: 10.11999/JEIT190047

    ZHAO Fei, ZHANG Wenkai, YAN Zhiyuan, et al. Multi-feature map pyramid fusion deep network for semantic segmentation on remote sensing data[J]. Journal of Electronics &Information Technology, 2019, 41(10): 2525–2531. doi: 10.11999/JEIT190047
    ZHANG Chenlin and WU Jianxin. Improving CNN linear layers with power mean non-linearity[J]. Pattern Recognition, 2019, 89: 12–21. doi: 10.1016/j.patcog.2018.12.029
    JEGOU H, DOUZE M, and SCHMID C. Hamming embedding and weak geometric consistency for large scale image search[C]. The 10th European Conference on Computer Vision, Marseille, France, 2008: 304–317. doi: 10.1007/978-3-540-88682-2_24.
    XIA Yan, HE Kaiming, WEN Fang, et al. Joint inverted indexing[C]. 2013 IEEE International Conference on Computer Vision, Sydney, Australia, 2013: 3416–3423. doi: 10.1109/ICCV.2013.424.
    TOLIAS G, SICRE R, and JéGOU H. Particular object retrieval with integral max-pooling of CNN activations[C]. The 4th International Conference on Learning Representations, San Juan, Puerto Rico, 2016: 1–12.
    LI Yang, XU Yulong, WANG Jiabao, et al. MS-RMAC: Multiscale regional maximum activation of convolutions for image retrieval[J]. IEEE Signal Processing Letters, 2017, 24(5): 609–613. doi: 10.1109/LSP.2017.2665522
    DATAR M, IMMORLICA N, INDYK P, et al. Locality- sensitive hashing scheme based on p-stable distributions[C]. The 20th Annual Symposium on Computational Geometry, Brooklyn, USA, 2004: 253–262. doi: 10.1145/997817.997857.
    GONG Yunchao and LAZEBNIK S. Iterative quantization: A procrustean approach to learning binary codes[C]. The 24th IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2011: 817–824. doi: 10.1109/CVPR.2011.5995432.
    LIU Wei, WANG Jun, JI Rongrong, et al. Supervised hashing with kernels[C]. 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 2074–2081. doi: 10.1109/CVPR.2012.6247912.
  • 加載中
圖(6) / 表(6)
計量
  • 文章訪問數(shù):  1731
  • HTML全文瀏覽量:  575
  • PDF下載量:  114
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-12-09
  • 修回日期:  2020-08-09
  • 網(wǎng)絡(luò)出版日期:  2020-08-13
  • 刊出日期:  2020-12-08

目錄

    /

    返回文章
    返回