一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

引入語義部位約束的行人再識別

陳瑩 陳巧媛

陳瑩, 陳巧媛. 引入語義部位約束的行人再識別[J]. 電子與信息學(xué)報, 2020, 42(12): 3037-3044. doi: 10.11999/JEIT190954
引用本文: 陳瑩, 陳巧媛. 引入語義部位約束的行人再識別[J]. 電子與信息學(xué)報, 2020, 42(12): 3037-3044. doi: 10.11999/JEIT190954
Ying CHEN, Qiaoyuan CHEN. Semantic Part Constraint for Person Re-identification[J]. Journal of Electronics & Information Technology, 2020, 42(12): 3037-3044. doi: 10.11999/JEIT190954
Citation: Ying CHEN, Qiaoyuan CHEN. Semantic Part Constraint for Person Re-identification[J]. Journal of Electronics & Information Technology, 2020, 42(12): 3037-3044. doi: 10.11999/JEIT190954

引入語義部位約束的行人再識別

doi: 10.11999/JEIT190954
基金項(xiàng)目: 國家自然科學(xué)基金(61573168),江蘇省六大人才高峰資助項(xiàng)目(2015-WLW-004)
詳細(xì)信息
    作者簡介:

    陳瑩:女,1976年生,教授,博士生導(dǎo)師,主要研究方向?yàn)樾畔⑷诤?、模式識別等

    陳巧媛:女,1995年生,碩士生,研究方向?yàn)樾腥嗽僮R別

    通訊作者:

    陳瑩 chenying@jiangnan.edu.cn

  • 中圖分類號: TN911.73; TP391

Semantic Part Constraint for Person Re-identification

Funds: The National Natural Science Foundation of China (61573168), The Six Talent Summit Project Talents of Jiangsu Province (2015-WLW-004)
  • 摘要: 為減輕行人圖片中的背景干擾,使網(wǎng)絡(luò)著重于行人前景并且提高前景中人體部位的利用率,該文提出引入語義部位約束(SPC)的行人再識別網(wǎng)絡(luò)。在訓(xùn)練階段,首先將行人圖片同時輸入主干網(wǎng)絡(luò)和語義部位分割網(wǎng)絡(luò),分別得到行人特征圖和部位分割圖;然后,將部位分割圖與行人特征圖融合,得到語義部位特征;接著,對行人特征圖進(jìn)行池化得到全局特征;最后,同時使用身份約束和語義部位約束訓(xùn)練網(wǎng)絡(luò)。在測試階段,由于語義部位約束使得全局特征擁有部位信息,因此測試時僅使用主干網(wǎng)絡(luò)提取行人的全局信息即可。在大規(guī)模公開數(shù)據(jù)集上的實(shí)驗(yàn)結(jié)果表明,語義部位約束能有效使得網(wǎng)絡(luò)提高辨別行人身份的能力并且縮減推斷網(wǎng)絡(luò)的計算花費(fèi)。與現(xiàn)有方法比較,該文網(wǎng)絡(luò)能更好地抵抗背景干擾,提高行人再識別性能。
  • 圖  1  本文網(wǎng)絡(luò)結(jié)構(gòu)圖

    圖  2  語義部位標(biāo)簽示例

    圖  3  $\lambda $的取值對應(yīng)Rank-1精度

    圖  4  行人檢索結(jié)果排序圖

    表  1  在Market-1501數(shù)據(jù)集上的對比實(shí)驗(yàn)(%)

    實(shí)驗(yàn)編號行人特征網(wǎng)絡(luò)約束Rank-1Rank-5Rank-10mAP
    1${{{f}}_{\rm{g}}}$${L_{{\rm{id}}}}$92.096.998.280.4
    2${{{C}}_f}$${L_{{\rm{id}}}}$92.797.598.680.6
    3${{{f}}_{\rm{g}}}$${L_{{\rm{id}}}} + {L_{{\rm{sp}}}}$93.697.698.783.6
    下載: 導(dǎo)出CSV

    表  2  不同網(wǎng)絡(luò)測試時長對比(ms)

    方法批次特征提取耗時
    復(fù)現(xiàn)SPReID82.87
    本文網(wǎng)絡(luò)9.45
    下載: 導(dǎo)出CSV

    表  3  不同方法在兩個數(shù)據(jù)集上的性能比較(%)

    方法Market-1501DukeMTMC-reID
    Rank-1mAPRank-1mAP
    VIM[11]79.559.968.949.3
    SVDNet[12]82.362.176.756.8
    APR[3]84.364.770.751.2
    FMN[13]86.067.174.556.9
    PSE[14]87.769.079.862.0
    PN-GAN[15]89.472.673.653.2
    CamStyle[16]89.571.678.357.6
    HA-CNN[17]91.275.780.563.8
    Part-Aligned[4]91.779.684.469.3
    SPReID[5]92.581.384.471.0
    AHR[18]93.176.281.765.9
    本文方法93.683.685.471.3
    下載: 導(dǎo)出CSV
  • LIAO Shengcai, HU Yang, ZHU Xiangyu, et al. Person re-identification by local maximal occurrence representation and metric learning[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, America, 2015: 2197–2206. doi: 10.1109/CVPR.2015.7298832.
    陳瑩, 許瀟月. 基于雙向參考集矩陣度量學(xué)習(xí)的行人再識別[J]. 電子與信息學(xué)報, 2020, 42(2): 394–402. doi: 10.11999/JEIT190159

    CHEN Ying and XU Xiaoyue. Matrix metric learning for person re-identification based on bidirectional reference set[J]. Journal of Electronics &Information Technology, 2020, 42(2): 394–402. doi: 10.11999/JEIT190159
    LIN Yutian, ZHENG Liang, ZHENG Zhedong, et al. Improving person re-identification by attribute and identity Learning[J]. Pattern Recognition, 2019, 95: 151–161. doi: 10.1016/j.patcog.2019.06.006
    SUH Y, WANG Jingdong, TANG Siyu, et al. Part-aligned bilinear representations for person re-identification[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 402–419. doi: 10.1007/978-3-030-01264-9_25.
    KALAYEH M M, BASARAN E, GOKMEN M, et al. Human semantic parsing for person re-identification[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, America, 2018: 1062–1071. doi: 10.1109/CVPR.2018.00117.
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, America, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
    FU Jun, LIU Jing, TIAN Haijie, et al. Dual attention network for scene segmentation[C]. The 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, America, 2019: 3146–3154.
    GüLER R A, NEVEROVA N, and KOKKINOS I. DensePose: Dense human pose estimation in the wild[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, America, 2018: 7297–7306. doi: 10.1109/CVPR.2018.00762.
    ZHENG Liang, SHEN Liyue, TIAN Lu, et al. Scalable person re-identification: A benchmark[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1116–1124. doi: 10.1109/ICCV.2015.133.
    ZHENG Zhedong, ZHENG Liang, and YANG Yi. Unlabeled samples generated by GAN improve the person re-identification baseline in vitro[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 3754–3762. doi: 10.1109/ICCV.2017.405.
    ZHENG Zhedong, ZHENG Liang, and YANG Yi. A discriminatively learned CNN embedding for person reidentification[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2018, 14(1): 13. doi: 10.1145/3159171
    SUN Yifan, ZHENG Liang, DENG Weijian, et al. SVDNet for pedestrian retrieval[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 3800–3808. doi: 10.1109/ICCV.2017.410.
    DING Guodong, KHAN S, TANG Zhenmin, et al. Feature mask network for person re-identification[J]. Pattern Recognition Letters, 2020, 137: 91–98. doi: 10.1016/j.patrec.2019.02.015
    SARFRAZ M S, SCHUMANN A, EBERLE A, et al. A pose-sensitive embedding for person re-identification with expanded cross neighborhood re-ranking[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, America, 2018: 420–429. doi: 10.1109/CVPR.2018.00051.
    QIAN Xuelin, FU Yanwei, XIANG Tao, et al. Pose-normalized image generation for person re-identification[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 650–667. doi: 10.1007/978-3-030-01240-3_40.
    ZHONG Zhun, ZHENG Liang, ZHENG Zhedong, et al. CamStyle: A novel data augmentation method for person re-identification[J]. IEEE Transactions on Image Processing, 2019, 28(3): 1176–1190. doi: 10.1109/TIP.2018.2874313
    LI Wei, ZHU Xiatian, and GONG Shaogang. Harmonious attention network for person re-identification[C]. The 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, America, 2018: 2285–2294. doi: 10.1109/CVPR.2018.00243.
    陳鴻昶, 吳彥丞, 李邵梅, 等. 基于行人屬性分級識別的行人再識別[J]. 電子與信息學(xué)報, 2019, 41(9): 2239–2246. doi: 10.11999/JEIT180740

    CHEN Hongchang, WU Yancheng, LI Shaomei, et al. Person re-identification based on attribute hierarchy recognition[J]. Journal of Electronics &Information Technology, 2019, 41(9): 2239–2246. doi: 10.11999/JEIT180740
  • 加載中
圖(4) / 表(3)
計量
  • 文章訪問數(shù):  1361
  • HTML全文瀏覽量:  639
  • PDF下載量:  81
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-11-27
  • 修回日期:  2020-06-04
  • 網(wǎng)絡(luò)出版日期:  2020-07-28
  • 刊出日期:  2020-12-08

目錄

    /

    返回文章
    返回