基于極化碼的無協(xié)商密鑰物理層安全傳輸方案
doi: 10.11999/JEIT190948
-
中國人民解放軍戰(zhàn)略支援部隊(duì)信息工程大學(xué) 鄭州 450001
Physical Layer Secure Transmission Scheme with Joint Polar Codes and Non-reconciliation Secret Keys
-
Information Engineering University, Zhengzhou 450001, China
-
摘要:
針對現(xiàn)有的密鑰生成方案需要在通信流程中增加額外的密鑰協(xié)商協(xié)議,導(dǎo)致在5G等標(biāo)準(zhǔn)通信系統(tǒng)中應(yīng)用受限的問題,該文提出一種基于極化碼的無協(xié)商密鑰物理層安全傳輸方案。首先基于信道特征提取未協(xié)商的物理層密鑰,然后針對物理信道與密鑰加密信道共同構(gòu)成的等效信道設(shè)計(jì)極化碼,最后利用未協(xié)商的物理層密鑰對編碼后的序列進(jìn)行簡單的模二加加密后傳輸。該方案通過針對性設(shè)計(jì)的極化碼糾正密鑰差異和噪聲引起的比特錯誤,實(shí)現(xiàn)可靠的安全傳輸。仿真表明,該文基于等效信道設(shè)計(jì)的極化碼在保證合法雙方以最優(yōu)的碼率可靠傳輸?shù)耐瑫r(shí)可以防止竊聽者竊聽,實(shí)現(xiàn)了安全與通信的一體化。
Abstract:The existing key generation scheme requires additional key reconciliation protocol in a communication process, resulting in the limited application to the communication system, such as the Fifth-Generation mobile communication (5G). A physical layer secure transmission scheme with a joint polar code and non-reconciliation secret keys is proposed. Firstly, the non-reconciliation physical layer keys are extracted from the channel feature, and then the polar code is designed based on the equivalent channel, which is formed by the physical channel and the key encryption channel. Finally, the encoded sequence is simply modular plus encrypted and transmitted using the non-reconciliation physical layer key. Key differences and noise-induced bit errors are corrected through a targeted design of polarization codes to achieve reliable and secure transmission. The simulation shows that the polar code based on the equivalent channel can ensure the reliable transmission between two legitimate users at the optimal code rate.
-
表 1 仿真參數(shù)列表
仿真參數(shù) 設(shè)定值 天線數(shù) 單天線 無線信道 瑞利平衰落信道 極化碼長 $N = 512$ 蒙特卡洛實(shí)驗(yàn)次數(shù) ${10^8}$ 量化級數(shù) 1 bit量化 噪聲功率 $\sigma _{\rm{w}}^2 = 1$ 功率分配 ${\sigma^2_{\rm{A} } }{\rm{ = } }{\sigma^2_{\rm{B} } }$ 下載: 導(dǎo)出CSV
表 2 極化碼參數(shù)與設(shè)計(jì)性能
信道條件 極化碼設(shè)計(jì)參數(shù) 極化碼實(shí)際性能 SNR(dB) N K ${P_{{\rm{QoS}}}}$ ${P_{{\rm{Sec}}}}$ $P_{\rm{e}}^{{\rm{AB}}}$ $P_{\rm{e}}^{{\rm{AE}}}$ $2$ $512$ 27 ${10^{ - 6}}$ ${10^{ - 1}}$ $9.2368 \times {10^{ - 7}}$ $0.4865$ $6$ $156$ $2.5952 \times {10^{ - 7}}$ $0.4973$ $10$ $203$ $1.1011 \times {10^{ - 7}}$ $0.4799$ 下載: 導(dǎo)出CSV
-
JI Xinsheng, HUANG Kaizhi, JIN Liang, et al. Overview of 5G security technology[J]. Science China Information Sciences, 2018, 61(8): 081301. doi: 10.1007/s11432-017-9426-4 JIAO Long, WANG Ning, WANG Pu, et al. Physical layer key generation in 5G wireless networks[J]. IEEE Wireless Communications, 2019, 26(5): 48–54. doi: 10.1109/MWC.001.1900061 WU Yongpeng, KHISTI A, XIAO Chengshan, et al. A survey of physical layer security techniques for 5G wireless networks and challenges ahead[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(4): 679–695. doi: 10.1109/JSAC.2018.2825560 LI Guyue, SUN Chen, ZHANG Junqing, et al. Physical layer key generation in 5G and beyond wireless communications: Challenges and opportunities[J]. Entropy, 2019, 21(5): 497. doi: 10.3390/e21050497 LI Guyue, ZHANG Zheying, Yu Yi, et al. A hybrid information reconciliation method for physical layer key generation[J]. Entropy, 2019, 21(7): 688. doi: 10.3390/e21070688 PENG Linning, LI Guyue, ZHANG Junqing, et al. Securing M2M transmissions using nonreconciled secret keys generated from wireless channels[C]. 2018 IEEE Globecom Workshops, Abu Dhabi, The United Arab Emirates, 2018: 1–6. ASSALINI A, DALL’ANESE E, and PUPOLIN S. Linear MMSE MIMO channel estimation with imperfect channel covariance information[C]. 2009 IEEE International Conference on Communications, Dresden, Germany, 2009: 1–5. HU Xiaoyan, JIN Liang, and ZHONG Zhou. A scrambling scheme based on random wireless channel characteristics for secure transmission[C]. The 2020 12th International Conference on Communication Software and Networks, Chongqing, China, 2020: 29–38. ISLAM N, GRAUR O, FILIP A, et al. LDPC code design aspects for physical-layer key reconciliation[C]. 2015 IEEE Global Communications Conference, San Diego, USA, 2015: 1–7. ARIKAN E. Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels[J]. IEEE Transactions on information Theory, 2009, 55(7): 3051–3073. doi: 10.1109/TIT.2009.2021379 TRIFONOV P. Efficient design and decoding of polar codes[J]. IEEE Transactions on Communications, 2012, 60(11): 3221–3227. doi: 10.1109/TCOMM.2012.081512.110872 張勝軍, 鐘州, 金梁, 等. 基于安全極化碼的密鑰協(xié)商方法[J]. 電子與信息學(xué)報(bào), 2019, 41(6): 1413–1419. doi: 10.11999/JEIT180896ZHANG Shengjun, ZHONG Zhou, JIN Liang, et al. Secret key agreement based on secure polar code[J]. Journal of Electronics &Information Technology, 2019, 41(6): 1413–1419. doi: 10.11999/JEIT180896 ZHANG Shengjun, JIN Liang, HUANG Yu, et al. Nonagreement secret key generation based on spatial symmetric scrambling and secure polar coding[J]. Scientia Sinica Informationis, 2019, 49(4): 486–502. doi: 10.1360/N112018-00119 白慧卿, 金梁, 肖帥芳. 多天線系統(tǒng)中面向物理層安全的極化編碼方法[J]. 電子與信息學(xué)報(bào), 2017, 39(11): 2587–2593. doi: 10.11999/JEIT170068BAI Huiqing, JIN Liang, XIAO Shuaifang, et al. Polar code for physical layer security in multi-antenna systems[J]. Journal of Electronics &Information Technology, 2017, 39(11): 2587–2593. doi: 10.11999/JEIT170068 Final report of 3GPP TSG RAN WG1 #88bis v1.0. 0[R]. 2017. -