一種Alpha穩(wěn)定分布噪聲下目標(biāo)螺旋槳特征提取方法
doi: 10.11999/JEIT190916
-
戰(zhàn)略支援部隊(duì)信息工程大學(xué) 鄭州 450001
基金項(xiàng)目: 國家自然科學(xué)基金 (61572518)
Extraction of Target Propeller Features in Alpha Distribution Noise
-
PLA Strategic Support Force Information Engineering University, Zhengzhou 450001, China
Funds: The National Natural Science Foundation of China(61572518)
-
摘要: 為了解決Alpha穩(wěn)定分布噪聲下目標(biāo)螺旋槳特征提取問題,該文提出一種基于分?jǐn)?shù)低階循環(huán)譜的特征提取方法。首先,從理論上推導(dǎo)出脈沖噪聲條件下艦船輻射噪聲分?jǐn)?shù)低階循環(huán)譜,指出分?jǐn)?shù)低階循環(huán)譜中出現(xiàn)峰值與螺旋槳特征的關(guān)系。然后根據(jù)該關(guān)系,提出基于分?jǐn)?shù)低階循環(huán)譜的螺旋槳特征估計(jì)方法。最后,通過仿真實(shí)驗(yàn)驗(yàn)證該方法的性能,并通過實(shí)測數(shù)據(jù)進(jìn)一步驗(yàn)證了算法有效性。
-
關(guān)鍵詞:
- Alpha穩(wěn)定分布噪聲 /
- 螺旋槳特征提取 /
- 分?jǐn)?shù)低階循環(huán)譜
Abstract: In order to solve the problem of target propeller features extraction under Alpha stable distribution noise, a method based on fractional low-order cyclic spectrum is proposed. Firstly, the low-order cyclic spectrum of ship radiation noise in impulse noise is derived, and the relationship between the propeller features and the peak value in the fractional low-order cyclic spectrum is given. Based on this, a propeller feature estimation method based on fractional low-order cyclic spectrum is proposed. Finally, the performance of method is verified by simulation experiments, and the effectiveness of the algorithm is further verified by the actual data. -
表 1 AUV軸頻估計(jì)結(jié)果
距離(m) 1 1 2 2 2.5 螺旋槳轉(zhuǎn)速
設(shè)定值(r/min)300 400 300 500 400 軸頻估計(jì)值(Hz) 4.71 6.34 4.73 7.93 6.28 估計(jì)誤差(Hz) 0.29 0.33 0.27 0.40 0.39 下載: 導(dǎo)出CSV
-
白敬賢, 高天德, 夏潤鵬. 基于DEMON譜信息提取算法的目標(biāo)識別方法研究[J]. 聲學(xué)技術(shù), 2017, 36(1): 88–92. doi: 10.16300/j.cnki.1000-3630.2017.01.016BAI Jingxian, GAO Tiande, and XIA Runpeng. Target recognition based on the information extraction algorithm of DEMON spectrum[J]. Technical Acoustics, 2017, 36(1): 88–92. doi: 10.16300/j.cnki.1000-3630.2017.01.016 陶篤純. 艦船噪聲節(jié)奏的研究(I)——數(shù)學(xué)模型及功率譜密度[J]. 聲學(xué)學(xué)報(bào), 1983, 8(2): 65–76. doi: 10.15949/j.cnki.0371-0025.1983.02.001TAO Dunchun. A study on ship radiated noise rhythms (I) — mathematical model and power spectrum density[J]. Acta Acustica, 1983, 8(2): 65–76. doi: 10.15949/j.cnki.0371-0025.1983.02.001 陶篤純. 艦船噪聲節(jié)奏的研究(Ⅱ)——自相關(guān)函數(shù)及節(jié)奏信息的提取[J]. 聲學(xué)學(xué)報(bào), 1983, 8(5): 280–289. doi: 10.15949/j.cnki.0371-0025.1983.05.004TAO Duchun. A study on ship-radiated noise rhythms (Ⅱ) — atuocorrelation function and extraction of rhythm information[J]. Acta Acustica, 1983, 8(5): 280–289. doi: 10.15949/j.cnki.0371-0025.1983.05.004 LOURENS J G and DU PRCEZ J A. Passive sonar ML estimator for ship propeller speed[J]. IEEE Journal of Oceanic Engineering, 1998, 23(4): 448–453. doi: 10.1109/48.725238 童峰, 陸佶人, 方世良. 水聲目標(biāo)識別中一種軸頻提取方法[J]. 聲學(xué)學(xué)報(bào), 2004, 29(5): 398–402. doi: 10.15949/j.cnki.0371-0025.2004.05.003TONG Feng, LU Jiren, and FANG Shiliang. A method to estimate the propeller shaft rate in underwater acoustic vessel classification[J]. Acta Acustica, 2004, 29(5): 398–402. doi: 10.15949/j.cnki.0371-0025.2004.05.003 CLARK P, KIRSTEINS I, and ATLAS L. Multiband analysis for colored amplitude-modulated ship noise[C]. 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, Dallas, USA, 2010: 3970–3973. WISDOM S, ATLAS L, and PITTON J. Extending coherence time for analysis of modulated random processes[C]. 2014 IEEE International Conference on Acoustics, Speech and Signal Processing, Florence, Italy, 2014: 340–344. LI Sichun and YANG Desen. DEMON feature extraction of acoustic vector signal based on 3/2-D spectrum[C]. The 2007 2nd IEEE Conference on Industrial Electronics and Applications, Harbin, China, 2007: 2239–2243. 溫旋旋. 基于高階統(tǒng)計(jì)量的艦船輻射噪聲包絡(luò)特征提取[D].[碩士論文], 哈爾濱工程大學(xué), 2017.WEN Xuanxuan. Envelope signature extraction of ship-radiated noise based on HOS[D].[Master dissertation], Harbin Engineering University, 2017. 許勁峰, 鄭威. 基于EMD-1(1/2)維譜的艦船輻射噪聲調(diào)制特征提取[J]. 艦船電子工程, 2018, 38(10): 197–203. doi: 10.3969/j.issn.1672-9730.2018.10.048XU Jinfeng and ZHENG Wei. Modulation feature extraction of ship radiated nose based on EMD 1(1/2)-dimensional spectrum[J]. Ship Electronic Engineering, 2018, 38(10): 197–203. doi: 10.3969/j.issn.1672-9730.2018.10.048 楊日杰, 鄭曉慶, 韓建輝, 等. 基于序列匹配的螺旋槳軸頻自動(dòng)提取方法[J]. 振動(dòng)與沖擊, 2018, 37(16): 57–61. doi: 10.13465/j.cnki.jvs.2018.16.009YANG Rijie, ZHENG Xiaoqing, HAN Jianhui, et al. An automatic extraction method of propeller shaft frequency based on sequence matching[J]. Journal of Vibration and Shock, 2018, 37(16): 57–61. doi: 10.13465/j.cnki.jvs.2018.16.009 CHITRE M, POTTER J, and HENG O S. Underwater acoustic channel characterisation for medium-range shallow water communications[C]. OCEANS ‘04 MTS/IEEE TECHNO-OCEAN ’04, Kobe, Japan, 2004: 40–45. 張安清, 邱天爽, 章新華. α穩(wěn)定分布的水聲信號處理新方法[J]. 電子與信息學(xué)報(bào), 2005, 27(8): 1201–1204.ZHANG Anqing, QIU Tianshuang, and ZHANG Xinhua. A new underwater acoustic signals processing approach to α-stable distribution[J]. Journal of Electronics &Information Technology, 2005, 27(8): 1201–1204. 程玉勝, 王易川, 史廣智, 等. 基于現(xiàn)代信號處理技術(shù)的艦船噪聲信號DEMON分析[J]. 聲學(xué)技術(shù), 2006, 25(1): 71–74. doi: 10.3969/j.issn.1000-3630.2006.01.016CHENG Yusheng, WANG Yichuan, SHI Guangzhi, et al. DEMON analysis of underwater target radiation noise based on modern signal processing[J]. Technical Acoustics, 2006, 25(1): 71–74. doi: 10.3969/j.issn.1000-3630.2006.01.016 張俊林, 劉明騫. 脈沖噪聲衰落信道下MPSK信號的符號周期估計(jì)[J]. 西安電子科技大學(xué)學(xué)報(bào): 自然科學(xué)版, 2018, 45(5): 38–42, 49. doi: 10.3969/j.issn.1001-2400.2018.05.007ZHANG Junlin and LIU Mingqian. Estimation of the symbol period of MPSK signals over fading channels with impulsive noise[J]. Journal of Xidian University:Natural Science, 2018, 45(5): 38–42, 49. doi: 10.3969/j.issn.1001-2400.2018.05.007 張娟娟. α穩(wěn)定分布噪聲下數(shù)字調(diào)制信號的分?jǐn)?shù)低階循環(huán)譜分析[D]. [碩士論文], 西安理工大學(xué), 2017.ZHANG Juanjuan. Fractional Low-order cyclic spectrum analysis of digital modulation signals under alpha stable distribution noise[D]. [Master dissertation], Xi’an University of Technology, 2017. -