一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于高效可擴(kuò)展改進(jìn)殘差結(jié)構(gòu)神經(jīng)網(wǎng)絡(luò)的艦船目標(biāo)識別技術(shù)

付哲泉 李尚生 李相平 但波 王旭坤

付哲泉, 李尚生, 李相平, 但波, 王旭坤. 基于高效可擴(kuò)展改進(jìn)殘差結(jié)構(gòu)神經(jīng)網(wǎng)絡(luò)的艦船目標(biāo)識別技術(shù)[J]. 電子與信息學(xué)報(bào), 2020, 42(12): 3005-3012. doi: 10.11999/JEIT190913
引用本文: 付哲泉, 李尚生, 李相平, 但波, 王旭坤. 基于高效可擴(kuò)展改進(jìn)殘差結(jié)構(gòu)神經(jīng)網(wǎng)絡(luò)的艦船目標(biāo)識別技術(shù)[J]. 電子與信息學(xué)報(bào), 2020, 42(12): 3005-3012. doi: 10.11999/JEIT190913
Zhequan FU, Shangsheng LI, Xiangping LI, Bo DAN, Xukun WANG. Ship Target Recognition Based on Highly Efficient Scalable Improved Residual Structure Neural Network[J]. Journal of Electronics & Information Technology, 2020, 42(12): 3005-3012. doi: 10.11999/JEIT190913
Citation: Zhequan FU, Shangsheng LI, Xiangping LI, Bo DAN, Xukun WANG. Ship Target Recognition Based on Highly Efficient Scalable Improved Residual Structure Neural Network[J]. Journal of Electronics & Information Technology, 2020, 42(12): 3005-3012. doi: 10.11999/JEIT190913

基于高效可擴(kuò)展改進(jìn)殘差結(jié)構(gòu)神經(jīng)網(wǎng)絡(luò)的艦船目標(biāo)識別技術(shù)

doi: 10.11999/JEIT190913
詳細(xì)信息
    作者簡介:

    付哲泉:男,1992年生,博士生,研究方向?yàn)榫_制導(dǎo)技術(shù)及其智能化

    李尚生:男,1965年生,教授,研究方向?yàn)閷?dǎo)彈制導(dǎo)技術(shù)

    李相平:男,1963年生,教授,研究方向?yàn)榫_制導(dǎo)和目標(biāo)探測技術(shù)

    但波:男,1985年生,講師,研究方向?yàn)槟繕?biāo)識別與選擇技術(shù)

    王旭坤:男,1995年生,碩士生,研究方向?yàn)槔走_(dá)目標(biāo)識別技術(shù)

    通訊作者:

    付哲泉 fuzq2413@163.com

  • 中圖分類號: TN957.51

Ship Target Recognition Based on Highly Efficient Scalable Improved Residual Structure Neural Network

  • 摘要: 神經(jīng)網(wǎng)絡(luò)的深度在一定范圍內(nèi)與識別效果成正相關(guān),為解決超出范圍后網(wǎng)絡(luò)層數(shù)增加識別準(zhǔn)確率卻下降的模型飽和問題,該文提出一種具有高效的微塊內(nèi)部結(jié)構(gòu)和殘差網(wǎng)絡(luò)結(jié)構(gòu)的神經(jīng)網(wǎng)絡(luò)模型,用于對艦船目標(biāo)基于高分辨距離像的分類識別。該方法利用具有小尺度卷積核的卷積模塊提取目標(biāo)的穩(wěn)定可分特征,同時(shí)利用聯(lián)合損失函數(shù)約束目標(biāo)特征的類內(nèi)距離提高識別能力。仿真結(jié)果表明,該模型相比于其他常見網(wǎng)絡(luò)結(jié)構(gòu),在模型參數(shù)更少的情況下,識別效果更好,同時(shí)具有較強(qiáng)的噪聲魯棒性。
  • 圖  1  針對HRRP的CNN結(jié)構(gòu)示意圖

    圖  2  殘差結(jié)構(gòu)

    圖  3  卷積模塊結(jié)構(gòu)

    圖  4  本文所提模型框圖

    圖  5  某艘艦船模型圖及其對應(yīng)幅值歸一化后的HRRP圖

    圖  6  HRRP數(shù)據(jù)平移截取示意圖

    圖  7  信噪比為15 dB時(shí)不同模型的特征可視化圖

    表  1  模型A各階段參數(shù)情況

    階段輸出結(jié)構(gòu)參數(shù)個(gè)數(shù)
    初始卷積層128×1×97×1, 9, s=299
    左側(cè)支路右側(cè)支路
    卷積模塊164×1×181×1, 9
    3×1, 3, s=2, x=3
    1×1, 12
    1×1, 15, s=2585
    卷積模塊232×1×361×1, 18
    3×1, 6, s=2, x=3
    1×1, 24
    1×1, 30, s=21980
    卷積模塊316×1×721×1, 36
    3×1, 12, s=2, x=3
    1×1, 48
    1×1, 60, s=27200
    卷積模塊48×1×1441×1, 72
    3×1, 24, s=2, x=3
    1×1, 96
    1×1, 120, s=227360
    全連接層1144全局平均池化+全局最大值池化0
    全連接層22288
    輸出層13SL+CL26
    參數(shù)總數(shù)37538
    下載: 導(dǎo)出CSV

    表  2  不同復(fù)雜度模型在不同信噪比數(shù)據(jù)集下的識別準(zhǔn)確率(%)

    模型名稱識別時(shí)間(μs)信噪比(dB)
    051015
    模型A25860.4289.4198.2199.83
    模型B32672.9594.4199.1599.89
    模型C32373.7893.7199.0799.86
    下載: 導(dǎo)出CSV

    表  3  CNN模型結(jié)構(gòu)和參數(shù)明細(xì)

    階段輸出維度網(wǎng)絡(luò)結(jié)構(gòu)參數(shù)個(gè)數(shù)
    卷積層1256×1×83×1, 8, s=164
    池化層1128×1×82×1, s=20
    卷積層2128×1×163×1, 16, s=1464
    池化層264×1×162×1, s=20
    卷積層364×1×323×1, 32, s=11696
    池化層332×1×322×1, s=20
    卷積層432×1×643×1, 64, s=16464
    池化層416×1×642×1, s=20
    卷積層516×1×641×1, 64, s=14416
    池化層58×1×642×1, s=20
    全連接層16432832
    全連接層22130
    輸出層13SL39
    參數(shù)總數(shù)46105
    下載: 導(dǎo)出CSV

    表  4  SDSAE&KNN模型結(jié)構(gòu)和參數(shù)明細(xì)

    階段輸出維度參數(shù)個(gè)數(shù)
    隱藏層1150×138550
    隱藏層2100×115100
    隱藏層350×15050
    隱藏層410×1510
    參數(shù)總數(shù)59210
    下載: 導(dǎo)出CSV

    表  5  SCAE模型結(jié)構(gòu)和參數(shù)明細(xì)

    階段輸出維度網(wǎng)絡(luò)結(jié)構(gòu)參數(shù)個(gè)數(shù)
    卷積層1256×1×1285×1, 128, s=1768
    池化層1128×1×1282×1, s=20
    卷積層2128×1×645×1, 64, s=141024
    池化層264×1×642×1, s=20
    卷積層364×1×323×1, 32, s=16176
    池化層332×1×322×1, s=20
    卷積層432×1×163×1, 16, s=11552
    池化層416×1×162×1, s=20
    卷積層516×1×81×1, 8, s=1136
    池化層58×1×82×1, s=20
    輸出層13SL845
    參數(shù)總數(shù)50501
    下載: 導(dǎo)出CSV

    表  6  不同信噪比條件下本節(jié)模型與對比模型識別準(zhǔn)確率(%)

    模型名稱識別時(shí)間(μs)信噪比(dB)
    051015
    模型A25860.4289.4198.2199.83
    CNN6958.2286.9195.5198.79
    SCAE4754.7886.5894.4498.78
    SDSAE&KNN6846.5083.9493.4498.65
    下載: 導(dǎo)出CSV
  • 魏存?zhèn)? 段發(fā)階, 劉先康. 基于寬帶雷達(dá)HRRP艦船目標(biāo)長度估計(jì)算法[J]. 系統(tǒng)工程與電子技術(shù), 2018, 40(9): 1960–1965. doi: 10.3969/j.issn.1001-506X.2018.09.10

    WEI Cunwei, DUAN Fajie, and LIU Xiankang. Length estimation method of ship target based on wide-band radar’s HRRP[J]. Systems Engineering and Electronics, 2018, 40(9): 1960–1965. doi: 10.3969/j.issn.1001-506X.2018.09.10
    賀思三, 趙會(huì)寧, 張永順. 基于時(shí)頻域聯(lián)合濾波的中段群目標(biāo)信號分離[J]. 雷達(dá)學(xué)報(bào), 2015, 4(5): 545–551. doi: 10.12000/JR15008

    HE Sisan, ZHAO Huining, and ZHANG Yongshun. Signal separation for target group in midcourse based on time-frequency filtering[J]. Journal of Radars, 2015, 4(5): 545–551. doi: 10.12000/JR15008
    吳佳妮, 陳永光, 代大海, 等. 基于快速密度搜索聚類算法的極化HRRP分類方法[J]. 電子與信息學(xué)報(bào), 2016, 38(10): 2461–2467. doi: 10.11999/JEIT151457

    WU Jiani, CHEN Yongguang, DAI Dahai, et al. Target recognition for polarimetric HRRP based on fast density search clustering method[J]. Journal of Electronics &Information Technology, 2016, 38(10): 2461–2467. doi: 10.11999/JEIT151457
    李建偉, 曲長文, 彭書娟, 等. 基于生成對抗網(wǎng)絡(luò)和線上難例挖掘的SAR圖像艦船目標(biāo)檢測[J]. 電子與信息學(xué)報(bào), 2019, 41(1): 143–149. doi: 10.11999/JEIT180050

    LI Jianwei, QU Changwen, PENG Shujuan, et al. Ship detection in SAR images based on generative adversarial network and online hard examples mining[J]. Journal of Electronics &Information Technology, 2019, 41(1): 143–149. doi: 10.11999/JEIT180050
    杜蘭, 魏迪, 李璐, 等. 基于半監(jiān)督學(xué)習(xí)的SAR目標(biāo)檢測網(wǎng)絡(luò)[J]. 電子與信息學(xué)報(bào), 2020, 42(1): 154–163. doi: 10.11999/JEIT190783

    DU Lan, WEI Di, LI Lu, et al. SAR target detection network via semi-supervised learning[J]. Journal of Electronics &Information Technology, 2020, 42(1): 154–163. doi: 10.11999/JEIT190783
    羅會(huì)蘭, 盧飛, 孔繁勝. 基于區(qū)域與深度殘差網(wǎng)絡(luò)的圖像語義分割[J]. 電子與信息學(xué)報(bào), 2019, 41(11): 2777–2786. doi: 10.11999/JEIT190056

    LUO Huilan, LU Fei, and KONG Fansheng. Image semantic segmentation based on region and deep residual network[J]. Journal of Electronics &Information Technology, 2019, 41(11): 2777–2786. doi: 10.11999/JEIT190056
    XING Shihong and ZHANG Shaokang. Ship model recognition based on convolutional neural networks[C]. 2018 IEEE International Conference on Mechatronics and Automation, Changchun, China, 2018: 144-148. doi: 10.1109/ICMA.2018.8484362.
    楊宏宇, 王峰巖. 基于深度卷積神經(jīng)網(wǎng)絡(luò)的氣象雷達(dá)噪聲圖像語義分割方法[J]. 電子與信息學(xué)報(bào), 2019, 41(10): 2373–2381. doi: 10.11999/JEIT190098

    YANG Hongyu and WANG Fengyan. Meteorological radar noise image semantic segmentation method based on deep convolutional neural network[J]. Journal of Electronics &Information Technology, 2019, 41(10): 2373–2381. doi: 10.11999/JEIT190098
    王鑫, 李可, 寧晨, 等. 基于深度卷積神經(jīng)網(wǎng)絡(luò)和多核學(xué)習(xí)的遙感圖像分類方法[J]. 電子與信息學(xué)報(bào), 2019, 41(5): 1098–1105. doi: 10.11999/JEIT180628

    WANG Xin, LI Ke, NING Chen, et al. Remote sensing image classification method based on deep convolution neural network and multi-kernel learning[J]. Journal of Electronics &Information Technology, 2019, 41(5): 1098–1105. doi: 10.11999/JEIT180628
    郭晨, 簡濤, 徐從安, 等. 基于深度多尺度一維卷積神經(jīng)網(wǎng)絡(luò)的雷達(dá)艦船目標(biāo)識別[J]. 電子與信息學(xué)報(bào), 2019, 41(6): 1302–1309. doi: 10.11999/JEIT180677

    GUO Chen, JIAN Tao, XU Congan, et al. Radar HRRP target recognition based on deep multi-scale 1D convolutional neural network[J]. Journal of Electronics &Information Technology, 2019, 41(6): 1302–1309. doi: 10.11999/JEIT180677
    王容川, 莊志洪, 王宏波, 等. 基于卷積神經(jīng)網(wǎng)絡(luò)的雷達(dá)目標(biāo)HRRP分類識別方法[J]. 現(xiàn)代雷達(dá), 2019, 41(5): 33–38. doi: 10.16592/j.cnki.1004-7859.2019.05.007

    WANG Rongchuan, ZHUANG Zhihong, WANG Hongbo, et al. HRRP classification and recognition method of radar target based on convolutional neural network[J]. Modern Radar, 2019, 41(5): 33–38. doi: 10.16592/j.cnki.1004-7859.2019.05.007
    劉興旺. 一種多層預(yù)訓(xùn)練卷積神經(jīng)網(wǎng)絡(luò)在圖像識別中的應(yīng)用[D]. [碩士論文], 中南民族大學(xué), 2018.

    LIU Xingwang. The application of a multi-layers pre-training convolutional neural network in image recognition[D]. [Master dissertation], South-Central University for Nationalities, 2018.
    趙飛翔, 劉永祥, 霍凱. 基于棧式降噪稀疏自動(dòng)編碼器的雷達(dá)目標(biāo)識別方法[J]. 雷達(dá)學(xué)報(bào), 2017, 6(2): 149–156. doi: 10.12000/JR16151

    ZHAO Feixiang, LIU Yongxiang, and HUO Kai. Radar target recognition based on stacked denoising sparse autoencoder[J]. Journal of Radars, 2017, 6(2): 149–156. doi: 10.12000/JR16151
    KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[C]. The 25th International Conference on Neural Information Processing Systems, Red Hook, United States, 2012: 1097–1105.
    SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. The 3rd International Conference on Learning Representations, San Diego, United States, 2015: 1–14.
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, United States, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
    SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-ResNet and the impact of residual connections on learning[C]. The 31st AAAI Conference on Artificial Intelligence, San Francisco, United States, 2017: 4278–4284.
    WEN Yandong, ZHANG Kaipeng, LI Zhifeng, et al. A discriminative feature learning approach for deep face recognition[C]. The 14th European Conference on Computer Vision, Amsterdam, Netherlands, 2016: 499–515. doi: 10.1007/978-3-319-46478-7_31.
  • 加載中
圖(7) / 表(6)
計(jì)量
  • 文章訪問數(shù):  5264
  • HTML全文瀏覽量:  1500
  • PDF下載量:  136
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-11-14
  • 修回日期:  2020-04-16
  • 網(wǎng)絡(luò)出版日期:  2020-04-25
  • 刊出日期:  2020-12-08

目錄

    /

    返回文章
    返回