基于高效可擴(kuò)展改進(jìn)殘差結(jié)構(gòu)神經(jīng)網(wǎng)絡(luò)的艦船目標(biāo)識別技術(shù)
doi: 10.11999/JEIT190913
-
海軍航空大學(xué) 煙臺(tái) 264001
Ship Target Recognition Based on Highly Efficient Scalable Improved Residual Structure Neural Network
-
Naval Aviation University, Yantai 264001, China
-
摘要: 神經(jīng)網(wǎng)絡(luò)的深度在一定范圍內(nèi)與識別效果成正相關(guān),為解決超出范圍后網(wǎng)絡(luò)層數(shù)增加識別準(zhǔn)確率卻下降的模型飽和問題,該文提出一種具有高效的微塊內(nèi)部結(jié)構(gòu)和殘差網(wǎng)絡(luò)結(jié)構(gòu)的神經(jīng)網(wǎng)絡(luò)模型,用于對艦船目標(biāo)基于高分辨距離像的分類識別。該方法利用具有小尺度卷積核的卷積模塊提取目標(biāo)的穩(wěn)定可分特征,同時(shí)利用聯(lián)合損失函數(shù)約束目標(biāo)特征的類內(nèi)距離提高識別能力。仿真結(jié)果表明,該模型相比于其他常見網(wǎng)絡(luò)結(jié)構(gòu),在模型參數(shù)更少的情況下,識別效果更好,同時(shí)具有較強(qiáng)的噪聲魯棒性。
-
關(guān)鍵詞:
- 目標(biāo)識別 /
- 高分辨距離像 /
- 神經(jīng)網(wǎng)絡(luò) /
- 殘差結(jié)構(gòu)
Abstract: The depth of neural network is positively correlated with the recognition effect in a certain range. In order to solve the problem that model recognition accuracy decreases when the number of network layers increases after exceeding the range. A neural network model with efficient micro internal blocks structure and residual network structure is proposed, which is used for recognition of ship targets based on High Range Resolution Profile (HRRP) data. In this method, the convolution module with a small scale convolution kernel is used to extract automatically the stable and separable features of target. And the intra-class distance of the target is constrained by the joint loss function to improve the recognition ability. Simulation results show that compared with other common network structures, this model has better recognition performance and stronger noise robustness with fewer model parameters. -
表 1 模型A各階段參數(shù)情況
階段 輸出 結(jié)構(gòu) 參數(shù)個(gè)數(shù) 初始卷積層 128×1×9 7×1, 9, s=2 99 左側(cè)支路 右側(cè)支路 卷積模塊1 64×1×18 1×1, 9
3×1, 3, s=2, x=3
1×1, 121×1, 15, s=2 585 卷積模塊2 32×1×36 1×1, 18
3×1, 6, s=2, x=3
1×1, 241×1, 30, s=2 1980 卷積模塊3 16×1×72 1×1, 36
3×1, 12, s=2, x=3
1×1, 481×1, 60, s=2 7200 卷積模塊4 8×1×144 1×1, 72
3×1, 24, s=2, x=3
1×1, 961×1, 120, s=2 27360 全連接層1 144 全局平均池化+全局最大值池化 0 全連接層2 2 288 輸出層 13 SL+CL 26 參數(shù)總數(shù) 37538 下載: 導(dǎo)出CSV
表 2 不同復(fù)雜度模型在不同信噪比數(shù)據(jù)集下的識別準(zhǔn)確率(%)
模型名稱 識別時(shí)間(μs) 信噪比(dB) 0 5 10 15 模型A 258 60.42 89.41 98.21 99.83 模型B 326 72.95 94.41 99.15 99.89 模型C 323 73.78 93.71 99.07 99.86 下載: 導(dǎo)出CSV
表 3 CNN模型結(jié)構(gòu)和參數(shù)明細(xì)
階段 輸出維度 網(wǎng)絡(luò)結(jié)構(gòu) 參數(shù)個(gè)數(shù) 卷積層1 256×1×8 3×1, 8, s=1 64 池化層1 128×1×8 2×1, s=2 0 卷積層2 128×1×16 3×1, 16, s=1 464 池化層2 64×1×16 2×1, s=2 0 卷積層3 64×1×32 3×1, 32, s=1 1696 池化層3 32×1×32 2×1, s=2 0 卷積層4 32×1×64 3×1, 64, s=1 6464 池化層4 16×1×64 2×1, s=2 0 卷積層5 16×1×64 1×1, 64, s=1 4416 池化層5 8×1×64 2×1, s=2 0 全連接層1 64 32832 全連接層2 2 130 輸出層 13 SL 39 參數(shù)總數(shù) 46105 下載: 導(dǎo)出CSV
表 4 SDSAE&KNN模型結(jié)構(gòu)和參數(shù)明細(xì)
階段 輸出維度 參數(shù)個(gè)數(shù) 隱藏層1 150×1 38550 隱藏層2 100×1 15100 隱藏層3 50×1 5050 隱藏層4 10×1 510 參數(shù)總數(shù) 59210 下載: 導(dǎo)出CSV
表 5 SCAE模型結(jié)構(gòu)和參數(shù)明細(xì)
階段 輸出維度 網(wǎng)絡(luò)結(jié)構(gòu) 參數(shù)個(gè)數(shù) 卷積層1 256×1×128 5×1, 128, s=1 768 池化層1 128×1×128 2×1, s=2 0 卷積層2 128×1×64 5×1, 64, s=1 41024 池化層2 64×1×64 2×1, s=2 0 卷積層3 64×1×32 3×1, 32, s=1 6176 池化層3 32×1×32 2×1, s=2 0 卷積層4 32×1×16 3×1, 16, s=1 1552 池化層4 16×1×16 2×1, s=2 0 卷積層5 16×1×8 1×1, 8, s=1 136 池化層5 8×1×8 2×1, s=2 0 輸出層 13 SL 845 參數(shù)總數(shù) 50501 下載: 導(dǎo)出CSV
表 6 不同信噪比條件下本節(jié)模型與對比模型識別準(zhǔn)確率(%)
模型名稱 識別時(shí)間(μs) 信噪比(dB) 0 5 10 15 模型A 258 60.42 89.41 98.21 99.83 CNN 69 58.22 86.91 95.51 98.79 SCAE 47 54.78 86.58 94.44 98.78 SDSAE&KNN 68 46.50 83.94 93.44 98.65 下載: 導(dǎo)出CSV
-
魏存?zhèn)? 段發(fā)階, 劉先康. 基于寬帶雷達(dá)HRRP艦船目標(biāo)長度估計(jì)算法[J]. 系統(tǒng)工程與電子技術(shù), 2018, 40(9): 1960–1965. doi: 10.3969/j.issn.1001-506X.2018.09.10WEI Cunwei, DUAN Fajie, and LIU Xiankang. Length estimation method of ship target based on wide-band radar’s HRRP[J]. Systems Engineering and Electronics, 2018, 40(9): 1960–1965. doi: 10.3969/j.issn.1001-506X.2018.09.10 賀思三, 趙會(huì)寧, 張永順. 基于時(shí)頻域聯(lián)合濾波的中段群目標(biāo)信號分離[J]. 雷達(dá)學(xué)報(bào), 2015, 4(5): 545–551. doi: 10.12000/JR15008HE Sisan, ZHAO Huining, and ZHANG Yongshun. Signal separation for target group in midcourse based on time-frequency filtering[J]. Journal of Radars, 2015, 4(5): 545–551. doi: 10.12000/JR15008 吳佳妮, 陳永光, 代大海, 等. 基于快速密度搜索聚類算法的極化HRRP分類方法[J]. 電子與信息學(xué)報(bào), 2016, 38(10): 2461–2467. doi: 10.11999/JEIT151457WU Jiani, CHEN Yongguang, DAI Dahai, et al. Target recognition for polarimetric HRRP based on fast density search clustering method[J]. Journal of Electronics &Information Technology, 2016, 38(10): 2461–2467. doi: 10.11999/JEIT151457 李建偉, 曲長文, 彭書娟, 等. 基于生成對抗網(wǎng)絡(luò)和線上難例挖掘的SAR圖像艦船目標(biāo)檢測[J]. 電子與信息學(xué)報(bào), 2019, 41(1): 143–149. doi: 10.11999/JEIT180050LI Jianwei, QU Changwen, PENG Shujuan, et al. Ship detection in SAR images based on generative adversarial network and online hard examples mining[J]. Journal of Electronics &Information Technology, 2019, 41(1): 143–149. doi: 10.11999/JEIT180050 杜蘭, 魏迪, 李璐, 等. 基于半監(jiān)督學(xué)習(xí)的SAR目標(biāo)檢測網(wǎng)絡(luò)[J]. 電子與信息學(xué)報(bào), 2020, 42(1): 154–163. doi: 10.11999/JEIT190783DU Lan, WEI Di, LI Lu, et al. SAR target detection network via semi-supervised learning[J]. Journal of Electronics &Information Technology, 2020, 42(1): 154–163. doi: 10.11999/JEIT190783 羅會(huì)蘭, 盧飛, 孔繁勝. 基于區(qū)域與深度殘差網(wǎng)絡(luò)的圖像語義分割[J]. 電子與信息學(xué)報(bào), 2019, 41(11): 2777–2786. doi: 10.11999/JEIT190056LUO Huilan, LU Fei, and KONG Fansheng. Image semantic segmentation based on region and deep residual network[J]. Journal of Electronics &Information Technology, 2019, 41(11): 2777–2786. doi: 10.11999/JEIT190056 XING Shihong and ZHANG Shaokang. Ship model recognition based on convolutional neural networks[C]. 2018 IEEE International Conference on Mechatronics and Automation, Changchun, China, 2018: 144-148. doi: 10.1109/ICMA.2018.8484362. 楊宏宇, 王峰巖. 基于深度卷積神經(jīng)網(wǎng)絡(luò)的氣象雷達(dá)噪聲圖像語義分割方法[J]. 電子與信息學(xué)報(bào), 2019, 41(10): 2373–2381. doi: 10.11999/JEIT190098YANG Hongyu and WANG Fengyan. Meteorological radar noise image semantic segmentation method based on deep convolutional neural network[J]. Journal of Electronics &Information Technology, 2019, 41(10): 2373–2381. doi: 10.11999/JEIT190098 王鑫, 李可, 寧晨, 等. 基于深度卷積神經(jīng)網(wǎng)絡(luò)和多核學(xué)習(xí)的遙感圖像分類方法[J]. 電子與信息學(xué)報(bào), 2019, 41(5): 1098–1105. doi: 10.11999/JEIT180628WANG Xin, LI Ke, NING Chen, et al. Remote sensing image classification method based on deep convolution neural network and multi-kernel learning[J]. Journal of Electronics &Information Technology, 2019, 41(5): 1098–1105. doi: 10.11999/JEIT180628 郭晨, 簡濤, 徐從安, 等. 基于深度多尺度一維卷積神經(jīng)網(wǎng)絡(luò)的雷達(dá)艦船目標(biāo)識別[J]. 電子與信息學(xué)報(bào), 2019, 41(6): 1302–1309. doi: 10.11999/JEIT180677GUO Chen, JIAN Tao, XU Congan, et al. Radar HRRP target recognition based on deep multi-scale 1D convolutional neural network[J]. Journal of Electronics &Information Technology, 2019, 41(6): 1302–1309. doi: 10.11999/JEIT180677 王容川, 莊志洪, 王宏波, 等. 基于卷積神經(jīng)網(wǎng)絡(luò)的雷達(dá)目標(biāo)HRRP分類識別方法[J]. 現(xiàn)代雷達(dá), 2019, 41(5): 33–38. doi: 10.16592/j.cnki.1004-7859.2019.05.007WANG Rongchuan, ZHUANG Zhihong, WANG Hongbo, et al. HRRP classification and recognition method of radar target based on convolutional neural network[J]. Modern Radar, 2019, 41(5): 33–38. doi: 10.16592/j.cnki.1004-7859.2019.05.007 劉興旺. 一種多層預(yù)訓(xùn)練卷積神經(jīng)網(wǎng)絡(luò)在圖像識別中的應(yīng)用[D]. [碩士論文], 中南民族大學(xué), 2018.LIU Xingwang. The application of a multi-layers pre-training convolutional neural network in image recognition[D]. [Master dissertation], South-Central University for Nationalities, 2018. 趙飛翔, 劉永祥, 霍凱. 基于棧式降噪稀疏自動(dòng)編碼器的雷達(dá)目標(biāo)識別方法[J]. 雷達(dá)學(xué)報(bào), 2017, 6(2): 149–156. doi: 10.12000/JR16151ZHAO Feixiang, LIU Yongxiang, and HUO Kai. Radar target recognition based on stacked denoising sparse autoencoder[J]. Journal of Radars, 2017, 6(2): 149–156. doi: 10.12000/JR16151 KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[C]. The 25th International Conference on Neural Information Processing Systems, Red Hook, United States, 2012: 1097–1105. SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. The 3rd International Conference on Learning Representations, San Diego, United States, 2015: 1–14. HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, United States, 2016: 770–778. doi: 10.1109/CVPR.2016.90. SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-ResNet and the impact of residual connections on learning[C]. The 31st AAAI Conference on Artificial Intelligence, San Francisco, United States, 2017: 4278–4284. WEN Yandong, ZHANG Kaipeng, LI Zhifeng, et al. A discriminative feature learning approach for deep face recognition[C]. The 14th European Conference on Computer Vision, Amsterdam, Netherlands, 2016: 499–515. doi: 10.1007/978-3-319-46478-7_31. -