一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于同步性腦網(wǎng)絡(luò)的支持張量機(jī)情緒分類研究

黃麗亞 蘇義博 馬捃凱 丁威威 宋傳承

黃麗亞, 蘇義博, 馬捃凱, 丁威威, 宋傳承. 基于同步性腦網(wǎng)絡(luò)的支持張量機(jī)情緒分類研究[J]. 電子與信息學(xué)報(bào), 2020, 42(10): 2462-2470. doi: 10.11999/JEIT190882
引用本文: 黃麗亞, 蘇義博, 馬捃凱, 丁威威, 宋傳承. 基于同步性腦網(wǎng)絡(luò)的支持張量機(jī)情緒分類研究[J]. 電子與信息學(xué)報(bào), 2020, 42(10): 2462-2470. doi: 10.11999/JEIT190882
Liya HUANG, Yibo SU, Junkai MA, Weiwei DING, Chuancheng SONG. Research on Support Tensor Machine Based on Synchronous Brain Network for Emotion Classification[J]. Journal of Electronics & Information Technology, 2020, 42(10): 2462-2470. doi: 10.11999/JEIT190882
Citation: Liya HUANG, Yibo SU, Junkai MA, Weiwei DING, Chuancheng SONG. Research on Support Tensor Machine Based on Synchronous Brain Network for Emotion Classification[J]. Journal of Electronics & Information Technology, 2020, 42(10): 2462-2470. doi: 10.11999/JEIT190882

基于同步性腦網(wǎng)絡(luò)的支持張量機(jī)情緒分類研究

doi: 10.11999/JEIT190882
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(61977039)
詳細(xì)信息
    作者簡(jiǎn)介:

    黃麗亞:女,1972年生,教授,研究方向?yàn)槲锫?lián)網(wǎng)RFID技術(shù)、EDA技術(shù)以及通信網(wǎng)絡(luò)的QoS性能研究

    蘇義博:男,1995年生,碩士生,研究方向?yàn)槟X電信號(hào)分析及嵌入式系統(tǒng)應(yīng)用

    馬捃凱:男,1996年生,碩士生,研究方向?yàn)槟X電信號(hào)分析

    丁威威:男,1996年生,碩士生,研究方向?yàn)榻?jīng)顱電刺激與人腦記憶力

    通訊作者:

    蘇義博 2524470353@qq.com

  • 中圖分類號(hào): TN911.7; TP391.4

Research on Support Tensor Machine Based on Synchronous Brain Network for Emotion Classification

Funds: The National Natural Science Foundation of China (61977039)
  • 摘要: 一直以來(lái),情緒是心理學(xué)、教育學(xué)、信息科學(xué)等多個(gè)學(xué)科的研究熱點(diǎn),腦電信號(hào)(EEG)因其客觀、不易偽裝的特點(diǎn),在情緒識(shí)別領(lǐng)域受到廣泛關(guān)注。由于人類情緒是大腦多個(gè)腦區(qū)相互作用產(chǎn)生的,該文提出一種基于同步性腦網(wǎng)絡(luò)的支持張量機(jī)情緒分類算法(SBN-STM),該算法采用相位鎖定值(PLV)構(gòu)建了同步性腦網(wǎng)絡(luò),分析多導(dǎo)聯(lián)腦電信號(hào)之間的同步性和相關(guān)性,并生成2階張量序列作為訓(xùn)練集,運(yùn)用支持張量機(jī)(STM)模型實(shí)現(xiàn)正負(fù)情緒的二分類。該文基于DEAP腦電情緒數(shù)據(jù)庫(kù),詳細(xì)分析了同步性腦網(wǎng)絡(luò)張量序列的選取方法,最佳張量序列窗口的大小和位置,解決了傳統(tǒng)情緒分類算法特征冗余的問(wèn)題,提高了模型訓(xùn)練速度。仿真實(shí)驗(yàn)表明,基于支持張量機(jī)的同步性腦網(wǎng)絡(luò)分類方法的情緒準(zhǔn)確率優(yōu)于支持向量機(jī)、C4.5決策樹(shù)、人工神經(jīng)網(wǎng)絡(luò)、K近鄰等以向量為特征的情緒分類模型。
  • 圖  1  SBN-STM算法架構(gòu)圖

    圖  2  張量序列窗口示意圖

    圖  3  窗口半徑為1 s的張量序列示意圖

    圖  4  32導(dǎo)聯(lián)位置示意圖[24]

    圖  5  各時(shí)刻的正向情緒PLV矩陣生成的灰度圖片

    圖  6  各時(shí)刻腦網(wǎng)絡(luò)灰度圖及節(jié)點(diǎn)連接圖

    圖  7  窗口不同中點(diǎn)位置準(zhǔn)確率比較

    圖  8  窗口不同中點(diǎn)位置平均分類準(zhǔn)確率比較

    圖  9  窗口不同中點(diǎn)位置分類準(zhǔn)確率盒須圖

    圖  10  窗口在不同半徑下的分類準(zhǔn)確率比較

    圖  11  窗口在不同半徑下的平均分類準(zhǔn)確率比較

    圖  12  窗口在不同半徑下的準(zhǔn)確率盒須圖

    表  1  各分類算法情緒二分類準(zhǔn)確率比較

    數(shù)據(jù)集分類算法特征特征類型二分類準(zhǔn)確率(%)
    DEAP數(shù)據(jù)庫(kù)SBN-STM同步性腦網(wǎng)絡(luò)2階張量78.30
    SVM[2]各頻段的功率譜密度向量73.30
    C4.5決策樹(shù)[2]各頻段的功率譜密度72.50
    KNN[3]各小波頻段的能量、熵、統(tǒng)計(jì)特征72.87
    ANN[4]α, β, θ 3個(gè)頻段上的雙譜64.84
    LR[25]皮爾遜相關(guān)系數(shù)腦功能連接網(wǎng)絡(luò)2階張量70.22
    下載: 導(dǎo)出CSV
  • 趙國(guó)朕, 宋金晶, 葛燕, 等. 基于生理大數(shù)據(jù)的情緒識(shí)別研究進(jìn)展[J]. 計(jì)算機(jī)研究與發(fā)展, 2016, 53(1): 80–92. doi: 10.7544/issn1000-1239.2016.20150636

    ZHAO Guozhen, SONG Jinjing, GE Yan, et al. Advances in emotion recognition based on physiological big data[J]. Journal of Computer Research and Development, 2016, 53(1): 80–92. doi: 10.7544/issn1000-1239.2016.20150636
    THAMMASAN N, MORIYAMA K, FUKUI K I, et al. Familiarity effects in EEG-based emotion recognition[J]. Brain Informatics, 2017, 4(1): 39–50. doi: 10.1007/s40708-016-0051-5
    MERT A and AKAN A. Emotion recognition from EEG signals by using multivariate empirical mode decomposition[J]. Pattern Analysis and Applications, 2018, 21(1): 81–89. doi: 10.1007/s10044-016-0567-6
    KUMAR N, KHAUND K, and HAZARIKA S M. Bispectral analysis of EEG for emotion recognition[J]. Procedia Computer Science, 2016, 84: 31–35. doi: 10.1016/j.procs.2016.04.062
    PINCUS S M and VISCARELLO R R. Approximate entropy: A regularity measure for fetal heart rate analysis[J]. Obstetrics and Gynecology, 1992, 79(2): 249–255.
    郝志峰, 謝蔚濤, 蔡瑞初, 等. 基于因果強(qiáng)度的時(shí)序因果關(guān)系發(fā)現(xiàn)算法[J]. 計(jì)算機(jī)工程與設(shè)計(jì), 2017, 38(1): 132–137. doi: 10.16208/j.issn1000-7024.2017.01.025

    HAO Zhifeng, XIE Weitao, CAI Ruichu, et al. Causal inference on time series using causal strength[J]. Computer Engineering and Design, 2017, 38(1): 132–137. doi: 10.16208/j.issn1000-7024.2017.01.025
    劉澄玉, 趙莉娜, 劉常春. 生理信號(hào)時(shí)間序列周期性和平穩(wěn)性對(duì)近似熵和樣本熵算法的影響分析[J]. 北京生物醫(yī)學(xué)工程, 2012, 31(2): 154–158, 163. doi: 10.3969/j.issn.1002-3208.2012.02.09

    LIU Chengyu, ZHAO Li’na, and LIU Changchun. Influence analysis of physiological time-series periodicity and stability for approximate entropy and sample entropy[J]. Beijing Biomedical Engineering, 2012, 31(2): 154–158, 163. doi: 10.3969/j.issn.1002-3208.2012.02.09
    ITO T, HEARNE L, MILL R, et al. Discovering the computational relevance of brain network organization[J]. Trends in Cognitive Sciences, 2020, 24(1): 25–38. doi: 10.1016/j.tics.2019.10.005
    高佳, 王蔚. 基于稀疏貝葉斯網(wǎng)絡(luò)的情緒腦電的有效性腦網(wǎng)絡(luò)研究[J]. 生物醫(yī)學(xué)工程學(xué)雜志, 2015, 32(5): 945–951. doi: 10.7507/1001-5515.20150169

    GAO Jia and WANG Wei. Research of effective network of emotion electroencephalogram based on sparse Bayesian network[J]. Journal of Biomedical Engineering, 2015, 32(5): 945–951. doi: 10.7507/1001-5515.20150169
    武杰, 周春宇, 楊葉, 等. 基于組獨(dú)立成分分析方法的情緒刺激對(duì)腦部激活區(qū)域的研究[J]. 生物醫(yī)學(xué)工程學(xué)進(jìn)展, 2018, 39(3): 125–129. doi: 10.3969/j.issn.1674-1242.2018.03.001

    WU Jie, ZHOU Chunyu, YANG Ye, et al. Research on the brain activation region from emotion stimulation based on the group ICA method[J]. Progress in Biomedical Engineering, 2018, 39(3): 125–129. doi: 10.3969/j.issn.1674-1242.2018.03.001
    MAHYARI A G, ZOLTOWSKI D M, BERNAT E M, et al. A tensor decomposition-based approach for detecting dynamic network states from EEG[J]. IEEE Transactions on Biomedical Engineering, 2017, 64(1): 225–237. doi: 10.1109/TBME.2016.2553960
    金廣智, 石林鎖, 崔智高, 等. 結(jié)合GLCM與三階張量建模的在線目標(biāo)跟蹤[J]. 電子與信息學(xué)報(bào), 2016, 38(7): 1609–1615. doi: 10.11999/JEIT151108

    JIN Guangzhi, SHI Linsuo, CUI Zhigao, et al. Online object tracking based on gray-level co-occurrence matrix and third-order tensor[J]. Journal of Electronics &Information Technology, 2016, 38(7): 1609–1615. doi: 10.11999/JEIT151108
    LIU Chuanwei, FU Yunfa, YANG Jun, et al. Discrimination of motor imagery patterns by electroencephalogram phase synchronization combined with frequency band energy[J]. IEEE/CAA Journal of Automatica Sinica, 2017, 4(3): 551–557. doi: 10.1109/JAS.2016.7510121
    CHEN Yanyan, WANG Kuaini, and ZHONG Ping. One-class support tensor machine[J]. Knowledge-Based Systems, 2016, 96: 14–28. doi: 10.1016/j.knosys.2016.01.007
    DIAN Renwei, LI Shutao, and FANG Leyuan. Learning a low tensor-train rank representation for hyperspectral image super-resolution[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(9): 2672–2683. doi: 10.1109/TNNLS.2018.2885616
    CAI Deng, HE Xiaofei, WEN Jirong, et al. Support tensor machines for text categorization[R]. UIUCDCS-R-2006-2714, 2006: 2222–6990.
    CHEN Yuee and REN Baili. Research on large scale data set processing based on SVM[J]. Advanced Materials Research, 2011, 216: 738–741. doi: 10.4028/www.scientific.net/amr.216.738
    ZHOU Bingyin, SONG Biao, HASSAN M M, et al. Multilinear rank support tensor machine for crowd density estimation[J]. Engineering Applications of Artificial Intelligence, 2018, 72: 382–392. doi: 10.1016/j.engappai.2018.04.011
    CHEN Yanyan, LU Liyun, and ZHONG Ping. One-class support higher order tensor machine classifier[J]. Applied Intelligence, 2017, 47(4): 1022–1030. doi: 10.1007/s10489-017-0945-9
    LI Zhibao, DAI Yuhong, and GAO Huan. Alternating projection method for a class of tensor equations[J]. Journal of Computational and Applied Mathematics, 2019, 346: 490–504. doi: 10.1016/j.cam.2018.07.013
    馮翔, 陳志坤, 趙宜楠, 等. 基于聯(lián)合優(yōu)化松弛交替投影的組網(wǎng)雷達(dá)恒模波形設(shè)計(jì)[J]. 電子與信息學(xué)報(bào), 2016, 38(7): 1745–1751. doi: 10.11999/JEIT151152

    FENG Xiang, CHEN Zhikun, ZHAO Yi’nan, et al. Unimodular waveforms design for netted radar system via joint optimization relaxed alternating projection[J]. Journal of Electronics &Information Technology, 2016, 38(7): 1745–1751. doi: 10.11999/JEIT151152
    SHI Haifa, ZHAO Xinbin, and JING Ling. Tensor distance based least square twin support tensor machine[J]. Applied Mechanics and Materials, 2014, 668. doi: 10.4028/www.scientific.net/amm.668-669.1170
    CYGANEK B and WOZNIAK M. Efficient computation of the tensor chordal kernels[J]. Procedia Computer Science, 2016, 80: 1702–1711. doi: 10.1016/j.procs.2016.05.511
    KOELSTRA S, MüHL C, SOLEYMANI M, et al. DEAP: A database for emotion analysis; Using physiological signals[J]. IEEE Transactions on Affective Computing, 2012, 1(3): 18–31. doi: 10.1109/t-affc.2011.15
    趙少楷. 基于EEG腦網(wǎng)絡(luò)特征的情緒識(shí)別研究[D]. [碩士論文], 杭州電子科技大學(xué), 2018.

    ZHAO Shaokai. The research of emotion recognition based on features of brain networks[D]. [Master dissertation], Hangzhou Dianzi University, 2018.
  • 加載中
圖(12) / 表(1)
計(jì)量
  • 文章訪問(wèn)數(shù):  2577
  • HTML全文瀏覽量:  899
  • PDF下載量:  111
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-11-04
  • 修回日期:  2020-03-04
  • 網(wǎng)絡(luò)出版日期:  2020-03-20
  • 刊出日期:  2020-10-13

目錄

    /

    返回文章
    返回