基于DNA鏈置換的兩位格雷碼減法器分子電路設(shè)計
doi: 10.11999/JEIT190880
-
鄭州輕工業(yè)大學(xué)電氣信息工程學(xué)院 鄭州 450002
基金項目: 國家重點研發(fā)計劃中美政府間合作項目(2017YFE0103900),國家自然科學(xué)基金河南聯(lián)合基金(U1804262),國家自然科學(xué)基金重點項目(61632002),中原千人計劃(204200510003),食管癌防治國家重點實驗室開放基金(K2020-0010, K2020-0011)
Molecular Circuit Design of Two-bit Gray Code Subtracter Based on DNA Strand Displacement
-
School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
Funds: The National Key R and D Program of China for International S and T Cooperation Projects (2017YFE0103900), The Joint Funds of the National Natural Science Foundation of China (U1804262), The State Key Program of National Natural Science of China (61632002), The Central Plains Thousand Talents Program (204200510003), The Open Fund of State Key Laboratory of Esophageal Cancer Prevention and Treatment (K2020-0010, K2020-0011)
-
摘要: DNA鏈置換技術(shù)具有自發(fā)性、并行性、可編程性、動態(tài)級聯(lián)性的特點,在DNA計算中占據(jù)重要的地位。DNA鏈置換技術(shù)被廣泛的應(yīng)用于解決數(shù)學(xué)問題,該文采用格雷碼編碼方式結(jié)合DNA鏈置換技術(shù)設(shè)計了兩位減法器,擴(kuò)展DNA減法運(yùn)算。最后利用Visual DSD軟件模擬兩位減法器,該電路達(dá)到預(yù)期的功能,且具有并行性和可擴(kuò)展性,可與其他生化電路結(jié)合使用。Abstract: DNA strand displacement technology has the characteristics of spontaneity, parallelism, programmability and dynamic cascade, which is widely used to solve mathematical problems. In this paper, a two-bit subtracter is designed by using Gray code encoding and DNA strand displacement technology to extend the operation of DNA subtraction. Finally, Visual DSD software is used to simulate the two-bit subtracter. The circuit, with the strong parallelism and expansibility, achieves the expected function. It can be used in combination with other biochemical circuits.
-
Key words:
- Molecular circuit /
- DNA strand displacement /
- Gray code /
- Subtracter
-
表 1 兩位減法器操作運(yùn)算的真值表
X2X1/減數(shù) U2U1/被減數(shù) S2S1/差值 B2/高位借位 X2X1/減數(shù) U2U1/被減數(shù) S2S1/差值 B2/高位借位 00 00 00 0 11 00 11 0 00 01 10 1 11 01 01 0 00 11 11 1 11 11 00 0 00 10 01 1 11 10 10 1 01 00 01 0 10 00 10 0 01 01 00 0 10 01 11 0 01 11 10 1 10 11 01 0 01 10 11 1 10 10 00 0 下載: 導(dǎo)出CSV
-
XU Jin, QIANG Xiaoli, CHENG Kai, et al. A DNA computing model for the graph vertex coloring problem based on a probe graph[J]. Engineering, 2018, 4(1): 61–77. doi: 10.1016/j.eng.2018.02.011 SONG Tianqi, GARG S, MOKHTAR R, et al. Analog computation by DNA strand displacement circuits[J]. ACS Synthetic Biology, 2016, 5(8): 898–912. doi: 10.1021/acssynbio.6b00144 THUBAGERE A J, THACHUK C, BERLEANT J, et al. Compiler-aided systematic construction of large-scale DNA strand displacement circuits using unpurified components[J]. Nature Communications, 2017, 8: 14373. doi: 10.1038/ncomms14373 ZOU Chengye, WEI Xiaopeng, ZHANG Qiang, et al. Solution of equations based on analog DNA strand displacement circuits[J]. IEEE Transactions on Nanobioscience, 2019, 18(2): 191–204. doi: 10.1109/TNB.2019.2897116 SONG Tianqi, GARG S, MOKHTAR R, et al. Design and analysis of compact DNA strand displacement circuits for analog computation using autocatalytic amplifiers[J]. ACS Synthetic Biology, 2018, 7(1): 46–53. doi: 10.1021/acssynbio.6b00390 李佩佳, 石勇, 汪華東, 等. 基于有序編碼的核極限學(xué)習(xí)順序回歸模型[J]. 電子與信息學(xué)報, 2018, 40(6): 1287–1293. doi: 10.11999/JEIT170765LI Peijia, SHI Yong, WANG Huadong, et al. Ordered code-based kernel extreme learning machine for ordinal regression[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1287–1293. doi: 10.11999/JEIT170765 劉偉, 魏志剛, 杜薇, 等. 近閾值電壓下可容錯的末級緩存結(jié)構(gòu)設(shè)計[J]. 電子與信息學(xué)報, 2018, 40(7): 1759–1766. doi: 10.11999/JEIT170989LIU Wei, WEI Zhigang, DU Wei, et al. Fault-tolerant last level cache architecture design at near-threshold voltage[J]. Journal of Electronics &Information Technology, 2018, 40(7): 1759–1766. doi: 10.11999/JEIT170989 KONG Jinglin, ZHU Jinbo, CHEN Kaikai, et al. Specific biosensing using DNA aptamers and nanopores[J]. Advanced Functional Materials, 2019, 29(3): 1807555. doi: 10.1002/adfm.201807555 CUI Yunxi, FENG Xuenan, WANG Yaxin, et al. An integrated-molecular-beacon based multiple exponential strand displacement amplification strategy for ultrasensitive detection of DNA methyltransferase activity[J]. Chemical Science, 2019, 10(3): 2290–2297. doi: 10.1039/c8sc05102j LI Hua, LIU Jin, and GU Hongzhou. Targeting nucleolin to obstruct vasculature feeding with an intelligent DNA nanorobot[J]. Journal of Cellular and Molecular Medicine, 2019, 23(3): 2248–2250. doi: 10.1111/jcmm.14127 KIELAR C, REDDAVIDE F V, TUBBENHAUER S, et al. Pharmacophore nanoarrays on DNA origami substrates as a single-molecule assay for fragment-based drug discovery[J]. Angewandte Chemie, 2018, 130(45): 15089–15093. doi: 10.1002/ange.201806778 TASCIOTTI E. Smart cancer therapy with DNA origami[J]. Nature Biotechnology, 2018, 36(3): 234–235. doi: 10.1038/nbt.4095 CORDEIRO M, OTRELO-CARDOSO A R, SVERGUN D I, et al. Optical and structural characterization of a chronic myeloid leukemia DNA biosensor[J]. ACS Chemical Biology, 2018, 13(5): 1235–1242. doi: 10.1021/acschembio.8b00029 ELBAZ J, LIOUBASHEVSKI O, WANG Fuan, et al. DNA computing circuits using libraries of DNAzyme subunits[J]. Nature Nanotechnology, 2010, 5(6): 417–422. doi: 10.1038/nnano.2010.88 QIAN Lulu and WINFREE E. A simple DNA gate motif for synthesizing large-scale circuits[J]. Journal of the Royal Society Interface, 2011, 8(62): 1281–1297. doi: 10.1098/rsif.2010.0729 QIAN Lulu, WINFREE E, and BRUCK J. Neural network computation with DNA strand displacement cascades[J]. Nature, 2011, 475(7356): 368–372. doi: 10.1038/nature10262 馬麗娜, 董亞非, 張成, 等. 基于DNA鏈置換與熒光標(biāo)記的0–1規(guī)劃問題的計算模型[J]. 數(shù)學(xué)的實踐與認(rèn)識, 2013, 43(11): 152–159. doi: 10.3969/j.issn.1000-0984.2013.11.020MA Lina, DONG Yafei, ZHANG Cheng, et al. A computing model based on DNA strand replacement/fluorescence labeling for 0–1 programming[J]. Mathematics in Practice and Theory, 2013, 43(11): 152–159. doi: 10.3969/j.issn.1000-0984.2013.11.020 姚莉娜, 田桂花, 葉盟盟, 等. DNA鏈置換技術(shù)的研究現(xiàn)狀與展望[J]. 鄭州輕工業(yè)學(xué)院學(xué)報: 自然科學(xué)版, 2014, 29(1): 15–21. doi: 10.3969/j.issn.2095-476X.2014.01.003YAO Lina, TIAN Guihua, YE Mengmeng, et al. Current situation and prospect of DNA strand displacement technology[J]. Journal of Zhengzhou University of Light Industry:Natural Science, 2014, 29(1): 15–21. doi: 10.3969/j.issn.2095-476X.2014.01.003 ZOU Chengye, WEI Xiaopeng, ZHANG Qiang, et al. Four-analog computation based on DNA strand displacement[J]. ACS Omega, 2017, 2(8): 4143–4160. doi: 10.1021/acsomega.7b00572 LOPEZ R, WANG Ruofan, and SEELIG G. A molecular multi-gene classifier for disease diagnostics[J]. Nature Chemistry, 2018, 10(7): 746–754. doi: 10.1038/s41557-018-0056-1 -