荷控憶阻器記憶衰退的寄生效應
doi: 10.11999/JEIT190865
-
杭州電子科技大學現(xiàn)代電路與智能信息研究所 杭州 310018
基金項目: 國家自然科學基金(61771176,61801154)
The Role of Parasitic Elements in Fading Memory of A Charge Controlled Memristor
-
Institute of Modern Circuit and Intelligent Information, Hangzhou Dianzi University, Hangzhou 310018, China
Funds: The National Natural Science Foundation of China(61771176, 61801154)
-
摘要: 荷控憶阻器在寄生元件存在的情況下,可能發(fā)生記憶衰退現(xiàn)象。該文采用憶阻器動力學路線圖和仿真的方法,研究了憶阻器寄生電阻和寄生電容對其動力學特性的影響。理論和仿真分析發(fā)現(xiàn),理想荷控(流控)憶阻器在直流和交流激勵下,寄生電阻或寄生電容單獨存在時不發(fā)生記憶衰退現(xiàn)象,但在寄生電阻和寄生電容同時存在的情況下會發(fā)生記憶衰退,其機理是寄生元件形成放電通路,從而導致荷控憶阻器產(chǎn)生了記憶衰退。Abstract: In the presence of parasitic elements, fading memory may occur in charge controlled memristors. The effects of parasitic resistance and capacitance on the dynamic characteristics of memristor are studied by using the dynamic route map and simulation method. The oretical and simulation analysis shows that the ideal charge controlled (current controlled) memristor does not have fading memory when the parasitic resistance or capacitance exists alone under the excitation of DC and AC, but fading memory occurs when the parasitic resistance and capacitance exist at the same time. The mechanism is that the parasitic elements form discharge path, which leads to fading memory of the charge controlled memristor.
-
Key words:
- Memristor /
- Fading memory /
- Parasitic effects
-
CHUA L O. Memristor—the missing circuit element[J]. IEEE Transactions on Circuit Theory, 1971, 18(5): 507–519. doi: 10.1109/TCT.1971.1083337 CHUA L O and KANG S M. Memristive devices and systems[J]. Proceedings of the IEEE, 1976, 64(2): 209–223. doi: 10.1109/PROC.1976.10092 STRUKOV D B, SNIDER G S, STEWART D R, et al. The missing memristor found[J]. Nature, 2008, 453(7191): 80–83. doi: 10.1038/nature06932 TOUR J M and HE Tao. Electronics: The fourth element[J]. Nature, 2008, 453(7191): 42–43. doi: 10.1038/453042a YANG J J, PICKETT M D, LI Xuema, et al. Memristive switching mechanism for metal/oxide/metal nanodevices[J]. Nature Nanotechnology, 2008, 3(7): 429–433. doi: 10.1038/nnano.2008.160 VONGEHR S and MENG Xiangkang. The missing memristor has not been found[J]. Scientific Reports, 2015, 5(1): 11657. doi: 10.1038/srep11657 ASCOLI A, TETZLAFF R, CHUA L O, et al. History erase effect in a non-volatile Memristor[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2016, 63(3): 389–400. doi: 10.1109/TCSI.2016.2525043 ASCOLI A, TETZLAFF R, CHUA L O, et al. Fading memory effects in a memristor for cellular nanoscale network applications[C]. The 2016 Design, Automation & Test in Europe Conference & Exhibition, Dresden, Germany, 2016: 421–425. MENZEL S, WASER R, SIEMON A, et al. On the origin of the fading memory effect in ReRAMs[C]. The 27th IEEE 2017 International Symposium on Power and Timing Modeling, Optimization and Simulation, Thessaloniki, Greece, 2017: 1–5. ASCOLI A, TETZLAFF R, and CHUA L O. The first ever real Bistable Memristors—Part I: Theoretical insights on local fading memory[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2016, 63(12): 1091–1095. doi: 10.1109/TCSII.2016.2604567 ASCOLI A, TETZLAFF R, and CHUA L O. The first ever real bistable memristors -- Part Ⅱ: Design and analysis of a local fading memory system[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2016, 63(12): 1096–1100. doi: 10.1109/TCSII.2016.2613560 ASCOLI A, TETZLAFF R, and MENZEL S. Exploring the dynamics of real-world Memristors on the basis of circuit theoretic model predictions[J]. IEEE Circuits and Systems Magazine, 2018, 18(2): 48–76. doi: 10.1109/MCAS.2018.2821760 CHUA L. Five non-volatile memristor enigmas solved[J]. Applied Physics A, 2018, 124(8): Artical No. 563. doi: 10.1007/s00339-018-1971-0 BOYD S and CHUA L. Fading memory and the problem of approximating nonlinear operators with Volterra series[J]. IEEE Transactions on Circuits and Systems, 1985, 32(11): 1150–1161. doi: 10.1109/TCS.1985.1085649 CHUA L. Everything you wish to know about memristors but are afraid to ask[J]. Radioengineering, 2015, 24(2): 319–368. doi: 10.13164/re.2015.0319 ASCOLI A, SLESAZECK S, MAHNE H, et al. Nonlinear dynamics of a locally-active memristor[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, 62(4): 1165–1174. doi: 10.1109/TCSI.2015.2413152 CHUA L O. 3 new theorems on memristors[C]. The 7th Workshop and MC Meeting Memristors-Devices, Models, Circuits, Systems and Applications, Dubrovnik, Croatia, 2018. CORINTO F, ASCOLI A, and GILLI M. Analysis of current-voltage characteristics for memristive elements in pattern recognition systems[J]. International Journal of Circuit Theory and Applications, 2012, 40(12): 1277–1320. doi: 10.1002/cta.1804 -