基于MUSIC算法的二次雷達(dá)應(yīng)答信號分離方法
doi: 10.11999/JEIT190842
-
1.
海軍航空大學(xué) 煙臺 264001
-
2.
92337部隊(duì) 大連 116023
基金項(xiàng)目: 國家自然科學(xué)基金(U1933135, 61871391, 61931021);山東省重點(diǎn)研發(fā)計(jì)劃(2019GSF111004)
Overlapping Secondary Surveillance Radar Replies Separation Algorithm Based on MUSIC
-
1.
Naval Aviation University, Yantai 264001, China
-
2.
92337 Troop, Dalian 116023, China
Funds: The National Nature Science Foundation of China (U1933135, 61871391, 61931021), The Key Research and Development Program of Shandong Province (2019GSF111004)
-
摘要: 為了提高在高密度信號環(huán)境下對二次監(jiān)視雷達(dá)(SSR)應(yīng)答信號的接收性能,該文提出一種將信源數(shù)估計(jì)和信號到達(dá)方向(DOA)估計(jì)相結(jié)合構(gòu)建分離矩陣實(shí)現(xiàn)交疊信號分離的算法。首先根據(jù)交疊信號量測的特征值分布來確定交疊信號的個(gè)數(shù);然后利用MUSIC算法作譜峰搜索得到各信號的DOA,并重構(gòu)混合矩陣;最后通過計(jì)算混合矩陣的廣義逆得到分離矩陣,并實(shí)現(xiàn)對交疊信號的分離。以6陣元均勻線陣為前提進(jìn)行仿真分析,結(jié)果表明所提分離算法可達(dá)到90%以上的分離成功率,分離性能和獨(dú)立成分分析(ICA)算法相當(dāng),優(yōu)于基于投影技術(shù)分離算法(PA),但計(jì)算量遠(yuǎn)小于ICA算法,不足ICA算法計(jì)算量1/10,更易于工程化應(yīng)用。
-
關(guān)鍵詞:
- 交疊信號分離 /
- 陣列天線 /
- SSR應(yīng)答信號 /
- MUSIC算法 /
- 混合矩陣重構(gòu)
Abstract: In order to improve the reception performance of Secondary Surveillance Radar (SSR) replies in high-density signal environment, a separation algorithm is proposed, which constructs the separating matrix with estimating the source number and the Direction Of Arrival (DOA) of signal. Firstly, the number of overlapping signals is determined with the eigenvalues distribution of the measurements. Secondly, the mixing matrix with the DOA of signals, which is estimated by peak value searching in MUSIC algorithm. Finally, the separating matrix is estimated by calculating the Moore-Penrose inverse of the reconstructed mixing matrix, achieving separation of overlapping signals. Simulation is done based on uniform linear array with 6 elements. The results show that the proposed separation algorithm can achieve more than 90% success rate to separate two short Mode S replies, and the separating performance is similar to the Independent Component Analysis (ICA) algorithm and is better than Projection Algorithm (PA). The amount of calculation is less than 10 percent of ICA algorithm, thus the proposed separation algorithm is easier to engineering application. -
表 1 交疊信號個(gè)數(shù)檢測正確概率(%)
DOA 4 dB 8 dB 12 dB 16 dB 20 dB 0° 93.63 95.84 97.51 98.61 99.17 15° 93.07 95.84 96.95 97.78 98.89 30° 92.80 95.29 96.40 97.23 98.61 45° 90.86 93.91 95.84 96.40 98.34 60° 85.87 91.97 95.29 95.29 98.06 75° 72.58 78.95 87.81 93.91 97.51 90° 71.75 77.84 82.55 86.70 90.03 下載: 導(dǎo)出CSV
-
張軍. 空域監(jiān)視技術(shù)的新進(jìn)展及應(yīng)用[J]. 航空學(xué)報(bào), 2011, 32(1): 1–14.ZHANG Jun. New development and application of airspace surveillance technology[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(1): 1–14. PETROCHILOS N, GALATI G, and PIRACCI E. Separation of SSR signals by array processing in multilateration systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(3): 965–982. doi: 10.1109/TAES.2009.5259177 王洪, 劉昌忠, 汪學(xué)剛. 二次雷達(dá)S模式綜述[J]. 電訊技術(shù), 2008, 48(7): 113–118. doi: 10.3969/j.issn.1001-893X.2008.07.029WANG Hong, LIU Changzhong, and WANG Xuegang. Mode S for secondary surveillance radar (SSR): An introduction and overview[J]. Telecommunication Engineering, 2008, 48(7): 113–118. doi: 10.3969/j.issn.1001-893X.2008.07.029 PETROCHILOS N, GALATI G, MENE L, et al. Separation of multiple secondary surveillance radar sources in a real environment by a novel projection algorithm[C]. The 5th IEEE International Symposium on Signal Processing and Information Technology, Athens, Greece, 2005: 125–130. PETROCHILOS N, GALATI G, and PIRACCI E. Projection techniques for separation of multiple secondary surveillance radar sources in a real environment[C]. The 4th IEEE Workshop on Sensor Array and Multichannel Processing, Waltham, USA, 2006: 344–348. PETROCHILOS N, PIRACCI E G, and GALATI G. Separation of multiple secondary surveillance radar sources in a real environment for the near-far case[C]. Antennas and Propagation Society International Symposium, Honolulu, USA, 2007: 3988–3991. CHEN Xiaolong, CHEN Baoxin, GUAN Jian, et al. Space-range-Doppler focus-based low-observable moving target detection using frequency diverse array MIMO radar[J]. IEEE Access, 2018, 6: 43892–43904. doi: 10.1109/ACCESS.2018.2863745 陳小龍, 關(guān)鍵, 黃勇, 等. 雷達(dá)低可觀測動(dòng)目標(biāo)精細(xì)化處理及應(yīng)用[J]. 科技導(dǎo)報(bào), 2017, 35(20): 19–27.CHEN Xiaolong, GUAN Jian, HUANG Yong, et al. Radar refined processing and its applications for low-observable moving target[J]. Science &Technology Review, 2017, 35(20): 19–27. GALATI G, BARTOLINI S, and MENE L. Analysis of SSR signals by super resolution algorithms[C]. The 4th IEEE International Symposium on Signal Processing and Information Technology, Rome, Italy, 2004: 166–170. 王洪, 黃榮順, 徐自勵(lì). 多點(diǎn)定位中A/C模式混疊信號的時(shí)域分離算法[J]. 電子科技大學(xué)學(xué)報(bào), 2013, 42(6): 848–851. doi: 10.3969/j.issn.1001-0548.2013.06.007WANG Hong, HUANG Rongshun, and XU Zili. Separating algorithm of A/C garbles in time domain for multilateration[J]. Journal of University of Electronic Science and Technology of China, 2013, 42(6): 848–851. doi: 10.3969/j.issn.1001-0548.2013.06.007 王洪, 劉昌忠, 汪學(xué)剛, 等. 多點(diǎn)定位混疊信號的盲分離[J]. 電訊技術(shù), 2009, 49(12): 1–4. doi: 10.3969/j.issn.1001-893x.2009.12.001WANG Hong, LIU Changzhong, WANG Xuegang, et al. Blind Separation of gables in multilateration[J]. Telecommunication Engineering, 2009, 49(12): 1–4. doi: 10.3969/j.issn.1001-893x.2009.12.001 PETROCHILOS N and VAN DER VEEN A J. Algorithms to separate overlapping secondary surveillance radar replies[C]. 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, Montreal, Canada, 2004: 11–49. 劉松, 龐育才. 基于擴(kuò)展ESPRIT的隨機(jī)陣列高效DoA估計(jì)算法[J]. 電子與信息學(xué)報(bào), 2019, 41(6): 1324–1329. doi: 10.11999/JEIT180672LIU Song and PANG Yucai. Efficient augmented ESPRIT-based direction-of-arrival estimation algorithm for random arrays[J]. Journal of Electronics &Information Technology, 2019, 41(6): 1324–1329. doi: 10.11999/JEIT180672 王洪. 1030/1090 MHz頻譜的共享與干擾問題綜述[J]. 電訊技術(shù), 2013, 53(1): 105–109. doi: 10.3969/j.issn.1001-893x.2013.01.021WANG Hong. Overview of sharing and interference at 1030/1090 MHz[J]. Telecommunication Engineering, 2013, 53(1): 105–109. doi: 10.3969/j.issn.1001-893x.2013.01.021 孫清清, 王洪, 黃忠濤, 等. 1090MHz信號同頻干擾與竄擾概率探究[J]. 通信技術(shù), 2013, 46(2): 8–11. doi: 10.3969/j.issn.1002-0802.2013.02.005SUN Qingqing, WANG Hong, HUANG Zhongtao, et al. Exploration on 1090MHz co-channel interference and probability of garble[J]. Communications Technology, 2013, 46(2): 8–11. doi: 10.3969/j.issn.1002-0802.2013.02.005 SCHMIDT R O. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276–280. doi: 10.1109/TAP.1986.1143830 王旭東, 仲倩, 閆賀, 等. 一種二維信號波達(dá)方向估計(jì)的改進(jìn)多重信號分類算法[J]. 電子與信息學(xué)報(bào), 2019, 41(9): 2137–2142. doi: 10.11999/JEIT181090WANG Xudong, ZHONG Qian, YAN He, et al. An improved MUSIC algorithm for two dimensional direction of arrival estimation[J]. Journal of Electronics &Information Technology, 2019, 41(9): 2137–2142. doi: 10.11999/JEIT181090 張蔚. 二次雷達(dá)原理[M]. 北京: 國防工業(yè)出版社, 2009: 144–146.ZHANG Wei. Secondary Radar Principle[M]. Beijing: National Defense Industry Press, 2009: 144–146. RTCA D. RTCA DO-260B Minimum operational performance standards for 1090 MHz extended squitter automatic dependent surveillance-broadcast (ADS-B) and traffic information services-broadcast (TIS-B)[S]. Washington, DC: RTCA, Inc., 2011. ICAO A. 10 (Aeronautical Telecomm.) to the convention on international civil aviation[J]. Volume I, 1996: 52–60. 王永良, 陳輝, 彭應(yīng)寧, 等. 空間譜估計(jì)理論與算法[M]. 北京: 清華大學(xué)出版社, 2004: 40–52.WANG Yongliang, CHEN Hui, PENG Yingning, et al. Spatial Spectrum Estimation Theory and Algorithm[M]. Beijing: Tsinghua University Press, 2004: 40–52. ROY R and KAILATH T. ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(7): 984–995. doi: 10.1109/29.32276 王洪, 劉昌忠, 汪學(xué)剛, 等. 強(qiáng)干擾背景下S模式解碼方法[J]. 電子與信息學(xué)報(bào), 2009, 31(12): 2876–2880.WANG Hong, LIU Changzhong, WANG Xuegang, et al. Mode S decoding methods in heavy jamming environment[J]. Journal of Electronics &Information Technology, 2009, 31(12): 2876–2880. 張濤, 唐小明, 金林. 基于置信度的S模式信號隨機(jī)多位糾錯(cuò)技術(shù)[J]. 電訊技術(shù), 2015, 55(9): 1005–1009. doi: 10.3969/j.issn.1001-893x.2015.09.010ZHANG Tao, TANG Xiaoming, and JIN Lin. Confidence-based brute force technique with random errors for Mode S reply[J]. Telecommunication Engineering, 2015, 55(9): 1005–1009. doi: 10.3969/j.issn.1001-893x.2015.09.010 孫守宇. 盲信號處理基礎(chǔ)及其應(yīng)用[M]. 北京: 國防工業(yè)出版社, 2010: 50–95.SUN S Y. Blind Signal Processing Foundation and It’s Applications[M]. Beijing: National Defense Industry Press, 2010: 50–95. -