基于Keystone變換和擾動重采樣的機(jī)動平臺大斜視SAR成像方法
doi: 10.11999/JEIT190831
-
1.
陸軍工程大學(xué)石家莊校區(qū)無人機(jī)工程系 石家莊 050003
-
2.
陸軍工程大學(xué)石家莊校區(qū)電子與光學(xué)工程系 石家莊 050003
Maneuvering Platform High-squint SAR Imaging Method Based on Keystone Transform and Perturbation Resampling
-
1.
Department of UAV Engineering, Army Engineering University Shijiazhuang Campus, Shijiazhuang 050003, China
-
2.
Department of Electronic and Optical Engineering, Army Engineering University Shijiazhuang Campus, Shijiazhuang 050003, China
-
摘要: 加速度和下降速度的存在使機(jī)動平臺大斜視SAR的成像參數(shù)存在明顯的2維空變性,嚴(yán)重影響場景的聚焦深度。針對這個問題,該文提出了一種基于Keystone變換和擾動重采樣的機(jī)動SAR成像方法。首先,通過距離走動校正和去加速處理實現(xiàn)距離方位解耦以及方位頻譜去混疊,然后采用方位時域的Keystone變換校正空變的距離徙動;在方位壓縮過程中,通過引入時域的高階擾動因子去除多普勒參數(shù)的2階及3階方位空變性,然后通過方位頻域的重采樣處理去除多普勒參數(shù)的方位1階空變性。所提方法能夠有效校正距離徙動軌跡和方位聚焦參數(shù)的2維空變性,實現(xiàn)機(jī)動平臺大斜SAR的大場景成像,仿真分析驗證了所提方法的有效性。
-
關(guān)鍵詞:
- SAR成像 /
- 大斜視 /
- 機(jī)動平臺 /
- Keystone變換 /
- 擾動重采樣
Abstract: The existence of acceleration and descent velocity makes the imaging parameters of high-squint SAR mounted on maneuvering platform have obvious two-dimensional spatial variability, which affects seriously the focus depth of the scene. To solve this problem, a maneuvering SAR imaging method based on Keystone transform and azimuth perturbation resampling is proposed. First of all, the range azimuth decoupling and the azimuth spectrum de Aliasing are realized by the range walk correction and de-acceleration processing. Then the spatial-variant range cell migration is corrected by the Keystone transform in the azimuth time domain; In the process of azimuth compression, the second- and third-order spatial variabilities of Doppler parameters are removed by introducing the high-order perturbation factor in the time domain, and then the first-order spatial variability of the Doppler parameters is removed by the azimuth resampling processing in the azimuth frequency domain. The proposed method can effectively correct the two-dimensional spatial variability of range cell migration trajectory and azimuth focus parameters, and realize the large scene imaging of high-squint maneuvering SAR. Simulation analysis verifies the effectiveness of the proposed method.-
Key words:
- SAR imaging /
- High-squint /
- Maneuvering platforms /
- Keystone transform /
- Perturbation resampling
-
表 1 仿真參數(shù)
參數(shù) 數(shù)值 參數(shù) 數(shù)值 載頻 15 GHz 地面斜視角 60° 距離帶寬 300 MHz 平臺高度 4 km 合成孔徑時間 3 s 中心斜距 12 km 脈沖寬度 5 μs 速度 (150, 0, –30) m/s 脈沖重復(fù)頻率 1.5 kHz 加速度 (2.4, 0.8, –2.2) m/s2 下載: 導(dǎo)出CSV
表 2 點目標(biāo)方位向測量指標(biāo)
測量指標(biāo) FDPF方法[13] 本文擾動重采樣方法 點1 點2 點3 點1 點2 點3 PSLR(dB) –3.98 –13.26 –4.78 –12.68 –13.27 –13.39 ISLR(dB) –7.11 –9.83 –6.78 –9.37 –9.81 –10.28 MW 20.67 15.60 28.35 15.62 15.61 15.62 下載: 導(dǎo)出CSV
-
ZENG Tao, LI Yinghe, DING Zegang, et al. Subaperture approach based on azimuth-dependent range cell migration correction and azimuth focusing parameter equalization for maneuvering high-squint-mode SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(12): 6718–6734. doi: 10.1109/TGRS.2015.2447393 DANG Yanfeng, LIANG Yi, BIE Bowen, et al. A range perturbation approach for correcting spatially variant range envelope in diving highly squinted SAR with nonlinear trajectory[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(6): 858–862. doi: 10.1109/LGRS.2018.2812158 LIAO Yi, ZHOU Song, and YANG Lei. Focusing of SAR with curved trajectory based on improved hyperbolic range equation[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(3): 454–458. doi: 10.1109/LGRS.2018.2794471 李寧, 別博文, 邢孟道, 等. 基于多普勒重采樣的恒加速度大斜視SAR成像算法[J]. 電子與信息學(xué)報, 2019, 41(12): 2873–2880. doi: 10.11999/JEIT180953LI Ning, BIE Bowen, XING Mengdao, et al. A doppler resampling based imaging algorithm for high squint SAR with constant acceleration[J]. Journal of Electronics &Information Technology, 2019, 41(12): 2873–2880. doi: 10.11999/JEIT180953 LI Zhenyu, LIANG Yi, XING Mengdao, et al. An improved range model and Omega-k-based imaging algorithm for high-squint SAR with curved trajectory and constant acceleration[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(5): 656–660. doi: 10.1109/LGRS.2016.2533631 鄧歡, 李亞超, 梅海文, 等. 彈載曲線軌跡雙基SAR反向濾波PFA成像與圖像畸變校正算法[J]. 電子與信息學(xué)報, 2018, 40(11): 2638–2644. doi: 10.11999/JEIT170994DENG Huan, LI Yachao, MEI Haiwen, et al. New back-filtering PFA imaging algorithm and distortion correction method for missile-borne bistatic SAR with curved track[J]. Journal of Electronics &Information Technology, 2018, 40(11): 2638–2644. doi: 10.11999/JEIT170994 江淮, 趙惠昌, 漢敏, 等. 基于變量解耦的俯沖加速段彈載SAR大場景成像算法[J]. 物理學(xué)報, 2014, 63(7): 078403. doi: 10.7498/aps.63.078403JIANG Huai, ZHAO Huichang, HAN Min, et al. An imaging algorithm for missile-borne SAR with downward movement based on variable decoupling[J]. Acta Physica Sinica, 2014, 63(7): 078403. doi: 10.7498/aps.63.078403 LI Zhenyu, XING Mengdao, LIANG Yi, et al. A frequency-domain imaging algorithm for highly squinted SAR mounted on maneuvering platforms with nonlinear trajectory[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(7): 4023–4038. doi: 10.1109/TGRS.2016.2535391 江淮, 陳思, 趙惠昌, 等. 一種彈載SAR子孔徑成像算法[J]. 電子與信息學(xué)報, 2017, 39(10): 2526–2530. doi: 10.11999/JEIT161337JIANG Huai, CHEN Si, ZHAO Huichang, et al. Subaperture imaging algorithm for missile-borne SAR[J]. Journal of Electronics &Information Technology, 2017, 39(10): 2526–2530. doi: 10.11999/JEIT161337 劉文康, 景國彬, 孫光才, 等. 基于兩步方位重采樣的中軌SAR聚焦方法[J]. 電子與信息學(xué)報, 2019, 41(1): 136–142. doi: 10.11999/JEIT180238LIU Wenkang, JING Guobin, SUN Guangcai, et al. Medium-earth-orbit SAR data focusing method based on two-step azimuth resampling[J]. Journal of Electronics &Information Technology, 2019, 41(1): 136–142. doi: 10.11999/JEIT180238 TANG Shiyang, LIN Chunhui, ZHOU Yu, et al. Processing of long integration time spaceborne SAR data with curved orbit[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2): 888–904. doi: 10.1109/TGRS.2017.2756109 別博文, 梁毅, 黨彥鋒, 等. 曲線軌跡SAR大斜視子孔徑成像算法[J]. 系統(tǒng)工程與電子技術(shù), 2017, 39(3): 500–505. doi: 10.3969/j.issn.1001-506X.2017.03.07BIE Bowen, LIANG Yi, DANG Yanfeng, et al. Sub-aperture imaging algorithm for high squint SAR with curvilinear flight tracks[J]. Systems Engineering and Electronics, 2017, 39(3): 500–505. doi: 10.3969/j.issn.1001-506X.2017.03.07 黨彥鋒, 梁毅, 別博文, 等. 俯沖段大斜視SAR子孔徑成像二維空變校正方法[J]. 電子與信息學(xué)報, 2018, 40(11): 2621–2629. doi: 10.11999/JEIT180021DANG Yanfeng, LIANG Yi, BIE Bowen, et al. Two-dimension space-variance correction approach for diving highly squinted SAR imaging with sub-aperture[J]. Journal of Electronics &Information Technology, 2018, 40(11): 2621–2629. doi: 10.11999/JEIT180021 NEO Y L, WONG F, and CUMMING I G. A two-dimensional spectrum for bistatic SAR processing using series reversion[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(1): 93–96. doi: 10.1109/LGRS.2006.885862 LI Dong, LIN Huan, LIU Hongqing, et al. Focus improvement for high-resolution highly squinted SAR imaging based on 2-D spatial-variant linear and quadratic RCMs correction and azimuth-dependent doppler equalization[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(1): 168–183. doi: 10.1109/jstars.2016.2569561 TANG Shiyang, ZHANG Linrang, GUO Ping, et al. Processing of monostatic SAR data with general configurations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(12): 6529–6546. doi: 10.1109/TGRS.2015.2443835 -