基于憶阻器的乘法器電路設(shè)計(jì)
doi: 10.11999/JEIT190811
-
杭州電子科技大學(xué)現(xiàn)代電路與智能信息研究所 杭州 310018
基金項(xiàng)目: 國家自然科學(xué)基金(61771176, 61801154)
Design of Memristor Based Multiplier Circuits
-
Institute of Modern Circuits and Intelligent Information, Hangzhou Dianzi University, Hangzhou 310018, China
Funds: The National Natural Science Foundation of China (61771176, 61801154)
-
摘要: 憶阻器作為一種非易失性的新型電路元件,在數(shù)字邏輯電路中具有良好的應(yīng)用前景。目前,基于憶阻器的邏輯電路主要涉及全加器、乘法器以及異或(XOR)和同或(XNOR)門等研究,其中對(duì)于憶阻乘法器的研究仍比較少。該文采用兩種不同方式來設(shè)計(jì)基于憶阻器的2位二進(jìn)制乘法器電路。一種是利用改進(jìn)的“異或”及“與”多功能邏輯模塊,設(shè)計(jì)了一個(gè)2位二進(jìn)制乘法器電路,另一種是結(jié)合新型的比例邏輯,即由一個(gè)憶阻器和一個(gè)NMOS管構(gòu)成的單元門電路設(shè)計(jì)了一個(gè)2位二進(jìn)制乘法器。對(duì)于所設(shè)計(jì)的兩種乘法器進(jìn)行了比較,并通過LTSPICS仿真進(jìn)行驗(yàn)證。該文所設(shè)計(jì)的乘法器僅使用了2個(gè)N型金屬-氧化物-半導(dǎo)體(NMOS)以及18個(gè)憶阻器(另一種為6個(gè)NMOS和28個(gè)憶阻器),相比于過去的憶阻乘法器,減少了大量晶體管的使用。Abstract: As a new non-volatile electronic device, memristor has a good application prospect in digital logic circuits. At present, memristor based logic circuits mainly involve the research of full adder, multiplier, exclusive-OR (XOR) and equivalence (XNOR), etc., among which there is little research on memristor based multiplier. The 2-bit binary multiplier circuit is designed in two different ways based on memristor. One is to design a 2-bit binary multiplier circuit by using the improved XOR and AND multifunctional logic modules. The other is to design a 2-bit binary multiplier by combining a new type of ratio logic, i.e. a unit gate circuit consisting of one memristor and one NMOS transistor. The two multipliers are compared and validated by LTSPICS simulation. The multiplier designed in this paper only uses 2 N-Metal-Oxide-Semiconductor (NMOS) and 18 memristors (the other is 6 NMOS and 28 memristors). Compared with previous memristor based multipliers, the multipliers in this paper reduce the number of transistors.
-
Key words:
- Memristor /
- Logic circuits /
- Multiplier
-
表 2 2位二進(jìn)制乘法器元器件使用數(shù)量
下載: 導(dǎo)出CSV
-
HARON N Z and HAMDIOUI S. Why is CMOS scaling coming to an end?[C]. The 3rd International Design and Test Workshop, Monastir, Tunisia, 2008: 98–103. doi: 10.1109/IDT.2008.4802475. CHUA L. Memristor-the missing circuit element[J]. IEEE Transactions on Circuit Theory, 1971, 18(5): 507–519. doi: 10.1109/TCT.1971.1083337 STRUKOV D B, SNIDER G S, STEWART D R, et al. The missing memristor found[J]. Nature, 2008, 453(7191): 80–83. doi: 10.1038/nature06932 KIM K H, GABA S, WHEELER D, et al. A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications[J]. Nano Letters, 2011, 12(1): 389–395. doi: 10.1021/nl203687n ZHENG Nan and MAZUMDER P. Learning in memristor crossbar-based spiking neural networks through modulation of weight-dependent spike-timing-dependent plasticity[J]. IEEE Transactions on Nanotechnology, 2018, 17(3): 520–532. doi: 10.1109/TNANO.2018.2821131 VOURKAS I and SIRAKOULIS G C. Emerging memristor-based logic circuit design approaches: A review[J]. IEEE Circuits and Systems Magazine, 2016, 16(3): 15–30. doi: 10.1109/MCAS.2016.2583673 曾以成, 成德武, 譚其威. 簡潔無電感憶阻混沌電路及其特性[J]. 電子與信息學(xué)報(bào), 2019, 42(4): 862–869. doi: 10.11999/JEIT190859ZENG Yicheng, CHENG Dewu, and TAN Qiwei. A simple inductor-free memristive chaotic circuit and its characteristics[J]. Journal of Electronics &Information Technology, 2019, 42(4): 862–869. doi: 10.11999/JEIT190859 沈怡然, 李付鵬, 王光義. 荷控憶阻器記憶衰退的寄生效應(yīng)[J]. 電子與信息學(xué)報(bào), 2020, 42(4): 844–850. doi: 10.11999/JEIT190865SHEN Yiran, LI Fupeng, and WANG Guangyi. The role of parasitic elements in fading memory of a charge controlled memristor[J]. Journal of Electronics &Information Technology, 2020, 42(4): 844–850. doi: 10.11999/JEIT190865 KVATINSKY S, BELOUSOV D, LIMAN S, et al. MAGIC—Memristor-aided logic[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2014, 61(11): 895–899. doi: 10.1109/TCSII.2014.2357292 WANG H P, LIN C C, WU C C, et al. On synthesizing memristor-based logic circuits with minimal operational pulses[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2018, 26(12): 2842–2852. doi: 10.1109/TVLSI.2018.2816023 KVATINSKY S, WALD N, SATAT G, et al. MRL—Memristor ratioed logic[C]. The 13th International Workshop on Cellular Nanoscale Networks and their Applications, Turin, Italy, 2012: 1–6. doi: 10.1109/CNNA.2012.6331426. XIE Lei, DU N H A, TAOUIL M, et al. A mapping methodology of boolean logic circuits on memristor crossbar[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018, 37(2): 311–323. doi: 10.1109/TCAD.2017.2695880 XU Xiaoyan, CUI Xiaole, LUO Mengying, et al. Design of hybrid memristor-MOS XOR and XNOR logic gates[C]. 2017 International Conference on Electron Devices and Solid-State Circuits, Hsinchu, China, 2017: 1–2. doi: 10.1109/EDSSC.2017.8126414. YANG Xiaohan, ADEYEMO A, BALA A, et al. Novel memristive logic architectures[C]. The 26th International Workshop on Power and Timing Modeling, Optimization and Simulation, Bremen, Germany, 2016: 196–199. doi: 10.1109/PATMOS.2016.7833687. WANG Xiaoping, YANG Ran, CHEN Qiao, et al. An improved memristor-CMOS XOR logic gate and a novel full adder[C]. The 9th International Conference on Advanced Computational Intelligence, Doha, Qatar, 2017: 7–11. doi: 10.1109/ICACI.2017.7974477. ZHOU Yaxiong, LI Yi, XU Lei, et al. A hybrid memristor‐CMOS XOR gate for nonvolatile logic computation[J]. Physica Status Solidi (A) , 2016, 213(4): 1050–1054. doi: 10.1002/pssa.201532872 SINGH A. Memristor based XNOR for high speed area efficient 1-bit full adder[C]. 2017 International Conference on Computing, Communication and Automation, Greater Noida, India, 2017: 1549–1553. doi: 10.1109/CCAA.2017.8230048. SINGH T. Hybrid memristor-cmos (memos) based logic gates and adder circuits[J]. arXiv: 1506.06735, 2015. LIU Gongzhi, ZHENG Lijing, WANG Guangyi, et al. A carry lookahead adder based on hybrid CMOS-memristor logic circuit[J]. IEEE Access, 2019, 7: 43691–43696. doi: 10.1109/ACCESS.2019.2907976 TEIMOORY M, AMIRSOLEIMANI A, AHMADI A, et al. A hybrid memristor-CMOS multiplier design based on memristive universal logic gates[C]. The 60th IEEE International Midwest Symposium on Circuits and Systems, Boston, USA, 2017: 1422–1425. doi: 10.1109/MWSCAS.2017.8053199. SHIN S, KIM K, and KANG S M. Memristive XOR for resistive multiplier[J]. Electronics Letters, 2012, 48(2): 78–80. doi: 10.1049/el.2011.3270 YAKOPCIC C, TAHA T M, SUBRAMANYAM G, et al. Generalized memristive device SPICE model and its application in circuit design[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2013, 32(8): 1201–1214. doi: 10.1109/TCAD.2013.2252057 SINGH A. Design and analysis of memristor-based combinational circuits[J]. IETE Journal of Research, 2018, 33(4): 1–10. doi: 10.1080/03772063.2018.1486741 -