一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗證碼

基于圖像處理的建筑物振動位移測量算法

陳昌川 李奎 喬飛 姜宏偉 趙曼淇 公茂盛 王海寧 張?zhí)祢U

陳昌川, 李奎, 喬飛, 姜宏偉, 趙曼淇, 公茂盛, 王海寧, 張?zhí)祢U. 基于圖像處理的建筑物振動位移測量算法[J]. 電子與信息學(xué)報, 2020, 42(10): 2516-2523. doi: 10.11999/JEIT190805
引用本文: 陳昌川, 李奎, 喬飛, 姜宏偉, 趙曼淇, 公茂盛, 王海寧, 張?zhí)祢U. 基于圖像處理的建筑物振動位移測量算法[J]. 電子與信息學(xué)報, 2020, 42(10): 2516-2523. doi: 10.11999/JEIT190805
Changchuan CHEN, Kui LI, Fei QIAO, Hongwei JIANG, Manqi ZHAO, Maosheng GONG, Haining WANG, Tianqi ZHANG. Measurement Algorithm of Building Vibration Displacement Based on Image Signal Processing[J]. Journal of Electronics & Information Technology, 2020, 42(10): 2516-2523. doi: 10.11999/JEIT190805
Citation: Changchuan CHEN, Kui LI, Fei QIAO, Hongwei JIANG, Manqi ZHAO, Maosheng GONG, Haining WANG, Tianqi ZHANG. Measurement Algorithm of Building Vibration Displacement Based on Image Signal Processing[J]. Journal of Electronics & Information Technology, 2020, 42(10): 2516-2523. doi: 10.11999/JEIT190805

基于圖像處理的建筑物振動位移測量算法

doi: 10.11999/JEIT190805
基金項目: 國家重點研發(fā)計劃(2017YFC1500601),國家自然科學(xué)基金(61671095, 61771085, 61702065, 61701067);重慶市研究生教育教學(xué)改革研究重點項目(yjg192019)
詳細(xì)信息
    作者簡介:

    陳昌川:男,1978年生,副教授,研究方向為智能信息處理、圖像處理、移動通信

    李奎:男,1990年生,碩士生,研究方向為圖像與信號處理、目標(biāo)檢測與識別

    喬飛:男,1977年生,副研究員,博士,研究方向為集成智能、信號處理

    姜宏偉:男,1996年生,碩士生,研究方向為圖像處理

    趙曼淇:男,1997年生,博士生,研究方向為無人機(jī)目標(biāo)檢測追蹤

    公茂盛:男,1976年生,研究員,博士,研究方向為地震工程研究

    王海寧:男,1994年生,碩士生,研究方向為模式識別、圖像處理

    張?zhí)祢U:男,1971年生,教授,博士,研究方向為語言信號處理、圖像處理、通信信號的調(diào)制解調(diào)、盲處理、神經(jīng)網(wǎng)絡(luò)實現(xiàn)以及FPGA、VLSI實現(xiàn)

    通訊作者:

    喬飛 qiaofei@tsinghua.edu.cn

  • 中圖分類號: TN911.73; TP391.4

Measurement Algorithm of Building Vibration Displacement Based on Image Signal Processing

Funds: The National Key R&D Program of China (2017YFC1500601), The National Natural Science Foundation of China (61671095, 61771085, 61702065, 61701067), The Key Research Projects in Teaching Reform of Postgraduate Education in Chongqing City (yjg192019)
  • 摘要: 針對地震后高層建筑物結(jié)構(gòu)損傷監(jiān)測問題,該文提出一種基于方向碼匹配(OCM)和邊緣增強(qiáng)匹配(EEM)算法的微小位移測量算法。該算法先將原始圖像梯度信息與像素強(qiáng)度融合,增強(qiáng)圖像信息;采用相位相關(guān)法進(jìn)行匹配運(yùn)算,匹配速度比歸一化互相關(guān)法提升了96.1%;最后使用亞像素插值法,使測量結(jié)果達(dá)到亞像素精度。實驗結(jié)果表明,該文算法避免了OCM和EEM算法量化過程中圖像梯度信息的損失,大大提高了模板匹配精度,匹配速度比OCM提升了43.3%,比EEM提升了19.6%。
  • 圖  1  算法系統(tǒng)框圖

    圖  2  實驗平臺

    圖  3  黑白格標(biāo)靶

    圖  4  各算法在不同振幅下的測試結(jié)果

    圖  5  各算法在不同頻率下的測試結(jié)果

    圖  6  各算法在EI Centro地震波上的測試結(jié)果

    表  1  位移測量誤差對比(1.0 Hz–0.1 mm)

    算法RMSE (mm)NRMSE (%)
    OCM0.156919.1537
    EEM0.081113.7379
    本文算法0.041912.9371
    ORB0.186110.2422
    L_SURB0.045511.5654
    FRIF0.063513.9175
    AKAZE+BRIEF0.048614.0518
    下載: 導(dǎo)出CSV

    表  2  位移測量誤差對比(1.0 Hz–0.5 mm)

    算法RMSE (mm)NRMSE (%)
    OCM0.14588.6670
    EEM0.07625.5342
    本文算法0.02082.0162
    ORB0.481312.9148
    L_SURB0.06455.2588
    FRIF0.267815.0890
    AKAZE+BRIEF0.03463.3131
    下載: 導(dǎo)出CSV

    表  3  位移測量誤差對比(1.0 Hz–2.0 mm)

    算法RMSE (mm)NRMSE (%)
    OCM0.12992.8043
    EEM0.06941.5857
    本文算法0.02540.6234
    ORB0.50698.4445
    L_SURB0.09132.2266
    FRIF0.11482.7637
    AKAZE+BRIEF0.08161.9882
    下載: 導(dǎo)出CSV

    表  4  位移測量誤差對比(1.0 Hz–5.0 mm)

    算法RMSE (mm)NRMSE (%)
    OCM0.17651.7105
    EEM0.13601.3456
    本文算法0.08100.8077
    ORB3.649624.3930
    L_SURB0.33193.2540
    FRIF1.392112.2768
    AKAZE+BRIEF2.903417.7774
    下載: 導(dǎo)出CSV

    表  5  位移測量誤差對比(2.0 mm–0.5 Hz)

    算法RMSE (mm)NRMSE (%)
    OCM0.14043.0762
    EEM0.09512.2242
    本文算法0.04071.0115
    ORB0.601611.2924
    L_SURB0.14603.5440
    FRIF0.48379.8989
    AKAZE+BRIEF0.09842.4386
    下載: 導(dǎo)出CSV

    表  6  位移測量誤差對比(2.0 mm–1.0 Hz)

    算法RMSE (mm)NRMSE (%)
    OCM0.12992.8043
    EEM0.06941.5857
    本文算法0.02540.6234
    ORB0.50698.4445
    L_SURB0.09132.2266
    FRIF0.11482.7637
    AKAZE+BRIEF0.08161.9882
    下載: 導(dǎo)出CSV

    表  7  位移測量誤差對比(2.0 mm–2.0 Hz)

    算法RMSE (mm)NRMSE (%)
    OCM0.14923.4415
    EEM0.09742.2766
    本文算法0.05711.4305
    ORB0.753312.7011
    L_SURB0.11022.7085
    FRIF0.29115.2361
    AKAZE+BRIEF0.37279.2922
    下載: 導(dǎo)出CSV

    表  8  位移測量誤差對比(2.0 mm–5.0 Hz)

    算法RMSE (mm)NRMSE (%)
    OCM0.18984.3983
    EEM0.12532.9423
    本文算法0.09832.4761
    ORB0.745814.4986
    L_SURB0.512711.6999
    FRIF0.531311.4219
    AKAZE+BRIEF0.406710.1836
    下載: 導(dǎo)出CSV

    表  9  位移測量誤差對比(EI Centro)

    算法RMSE (mm)NRMSE (%)
    OCM0.14882.2487
    EEM0.10721.6262
    本文算法0.07001.0812
    ORB0.811810.5354
    L_SURB0.13792.1263
    FRIF0.24203.7104
    AKAZE+BRIEF0.13202.0248
    下載: 導(dǎo)出CSV

    表  10  幀間運(yùn)算平均時間對比(EI Centro)

    算法平均運(yùn)算時間(ms)
    OCM693.5835
    EEM476.2980
    本文算法378.3580
    ORB80.6894
    L-SURB62.1746
    FRIF199.6995
    AKAZE+BRIEF45.2793
    下載: 導(dǎo)出CSV

    表  11  歸一化互相關(guān)法與相位相關(guān)法幀間平均匹配時間對比

    算法平均匹配時間(ms)
    歸一化互相關(guān)法127.3326
    相位相關(guān)法4.9565
    下載: 導(dǎo)出CSV
  • FUKUDA Y, FENG M Q, and SHINOZUKA M. Cost-effective vision-based system for monitoring dynamic response of civil engineering structures[J]. Structural Control and Health Monitoring, 2010, 17(8): 918–936. doi: 10.1002/stc.360
    BREUER P, CHMIELEWSKI T, GóRSKI P, et al. Application of GPS technology to measurements of displacements of high-rise structures due to weak winds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(3): 223–230. doi: 10.1016/S0167-6105(01)00221-5
    吳元. 一種基于參數(shù)更新的機(jī)載SAR圖像目標(biāo)定位方法[J]. 電子與信息學(xué)報, 2019, 41(5): 1063–1068. doi: 10.11999/JEIT180564

    WU Yuan. An airborne SAR image target location algorithm based on parameter refining[J]. Journal of Electronics &Information Technology, 2019, 41(5): 1063–1068. doi: 10.11999/JEIT180564
    RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: An efficient alternative to SIFT or SURF[C]. 2011 International Conference on Computer Vision, Barcelona, Spain, 2011: 2564–2571. doi: 10.1109/ICCV.2011.6126544.
    SHU Caiwei and XIAO Xuezhong. ORB-oriented mismatching feature points elimination[C]. 2018 IEEE International Conference on Progress in Informatics and Computing (PIC), Suzhou, China, 2018: 246–249. doi: 10.1109/PIC.2018.8706272.
    WANG Yangping, YONG Jiu, ZHU Zhengping, et al. Augmented reality tracking registration based on improved KCF tracking and ORB feature detection[C]. The 7th International Conference on Information, Communication and Networks (ICICN), Macao, China, 2019: 230–233. doi: 10.1109/ICICN.2019.8834947.
    WANG Zhenhua, FAN Bin, and WU Fuchao. FRIF: Fast robust invariant feature[C]. British Machine Vision Conference 2013, Bristol, UK, 2013. doi: 10.5244/C.27.16.
    WANG Xiangyang, WANG Chao, WANG Li, et al. A fast and high accurate image copy-move forgery detection approach[J]. Multidimensional Systems and Signal Processing, 2020, 31(3): 857–883. doi: 10.1007/s11045-019-00688-x
    WANG Xu, ZOU Jiabao, and SHI Daosheng. An improved ORB image feature matching algorithm based on SURF[C]. The 3rd International Conference on Robotics and Automation Engineering (ICRAE), Guangzhou, China, 2018: 218-222. doi: 10.1109/ICRAE.2018.8586755.
    WANG Xinzhu, LV Xuliang, LI Ling, et al. A new method of speeded up robust features image registration based on image preprocessing[C]. 2018 International Conference on Information Systems and Computer Aided Education (ICISCAE), Changchun, China, 2018: 317-321. doi: 10.1109/ICISCAE.2018.8666894.
    牛燕雄, 陳夢琪, 張賀. 基于尺度不變特征變換的快速景象匹配方法[J]. 電子與信息學(xué)報, 2019, 41(3): 626–631. doi: 10.11999/JEIT180440

    NIU Yanxiong, CHEN Mengqi, and ZHANG He. Fast scene matching method based on scale invariant feature transform[J]. Journal of Electronics and Information Technology, 2019, 41(3): 626–631. doi: 10.11999/JEIT180440
    TAREEN S A K and SALEEM Z. A comparative analysis of SIFT, SURF, KAZE, AKAZE, ORB, and BRISK[C]. 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), Sukkur, Pakistan, 2018: 1–10. doi: 10.1109/ICOMET.2018.8346440.
    黃建坤. 基于圖像序列的橋梁形變位移測量方法[D].[碩士論文], 西南交通大學(xué), 2018.

    HUANG Jiankun. Displacement measurement method for bridge deformation based on image sequence[D].[Master dissertation], Southwest Jiaotong University, 2018.
    FUKUDA Y, FENG M Q, NARITA Y, et al. Vision-based displacement sensor for monitoring dynamic response using robust object search algorithm[J]. IEEE Sensors Journal, 2013, 13(12): 4725–4732. doi: 10.1109/JSEN.2013.2273309
    LUO Longxi and FENG M Q. Edge‐enhanced matching for gradient-based computer vision displacement measurement[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33(12): 1019–1040. doi: 10.1111/mice.12415
    劉有橋. 基于圖像處理的軌道位移監(jiān)測系統(tǒng)研究[J]. 計算機(jī)應(yīng)用與軟件, 2019, 36(1): 246–250, 315. doi: 10.3969/j.issn.1000-386x.2019.01.044

    LIU Youqiao. Track displacement monitoring system based on image processing[J]. Computer Applications and Software, 2019, 36(1): 246–250, 315. doi: 10.3969/j.issn.1000-386x.2019.01.044
    LUO Longxi, FENG M Q, and WU Z Y. Robust vision sensor for multi-point displacement monitoring of bridges in the field[J]. Engineering Structures, 2018, 163: 255–266. doi: 10.1016/j.engstruct.2018.02.014
  • 加載中
圖(6) / 表(11)
計量
  • 文章訪問數(shù):  4739
  • HTML全文瀏覽量:  1414
  • PDF下載量:  112
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-10-16
  • 修回日期:  2020-04-12
  • 網(wǎng)絡(luò)出版日期:  2020-04-28
  • 刊出日期:  2020-10-13

目錄

    /

    返回文章
    返回