一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

采用雙通道卷積神經(jīng)網(wǎng)絡(luò)構(gòu)建的隨機(jī)脈沖噪聲深度降噪模型

徐少平 林珍玉 崔燕 劉蕊蕊 楊曉輝

徐少平, 林珍玉, 崔燕, 劉蕊蕊, 楊曉輝. 采用雙通道卷積神經(jīng)網(wǎng)絡(luò)構(gòu)建的隨機(jī)脈沖噪聲深度降噪模型[J]. 電子與信息學(xué)報(bào), 2020, 42(10): 2541-2548. doi: 10.11999/JEIT190796
引用本文: 徐少平, 林珍玉, 崔燕, 劉蕊蕊, 楊曉輝. 采用雙通道卷積神經(jīng)網(wǎng)絡(luò)構(gòu)建的隨機(jī)脈沖噪聲深度降噪模型[J]. 電子與信息學(xué)報(bào), 2020, 42(10): 2541-2548. doi: 10.11999/JEIT190796
Shaoping XU, Zhenyu LIN, Yan CUI, Ruirui LIU, Xiaohui YANG. A Dual-Channel Deep Convolutional Neural Network Model for Random-Valued Impulse Noise Removal[J]. Journal of Electronics & Information Technology, 2020, 42(10): 2541-2548. doi: 10.11999/JEIT190796
Citation: Shaoping XU, Zhenyu LIN, Yan CUI, Ruirui LIU, Xiaohui YANG. A Dual-Channel Deep Convolutional Neural Network Model for Random-Valued Impulse Noise Removal[J]. Journal of Electronics & Information Technology, 2020, 42(10): 2541-2548. doi: 10.11999/JEIT190796

采用雙通道卷積神經(jīng)網(wǎng)絡(luò)構(gòu)建的隨機(jī)脈沖噪聲深度降噪模型

doi: 10.11999/JEIT190796
基金項(xiàng)目: 國家自然科學(xué)基金(61662044, 61163023),江西省自然科學(xué)基金(20171BAB202017)
詳細(xì)信息
    作者簡介:

    徐少平:男,1976年生,博士,教授,博士生導(dǎo)師,主要研究方向?yàn)閳D形圖像處理技術(shù)、機(jī)器視覺、虛擬手術(shù)仿真

    林珍玉:女,1996年生,碩士生,研究方向?yàn)閳D形圖像處理技術(shù)、機(jī)器視覺

    崔燕:女,1996年生,碩士生,研究方向?yàn)閳D形圖像處理技術(shù)、機(jī)器視覺

    劉蕊蕊:女,1995年生,碩士生,研究方向?yàn)閳D形圖像處理技術(shù)、機(jī)器視覺

    楊曉輝:男,1978年生,博士,副教授,主要研究方向?yàn)楣收显\斷及圖像處理

    通訊作者:

    徐少平 xushaoping@ncu.edu.cn

  • 中圖分類號(hào): TN911.73; TP391

A Dual-Channel Deep Convolutional Neural Network Model for Random-Valued Impulse Noise Removal

Funds: The National Natural Science Foundation of China (61662044, 61163023), The Natural Science Foundation of Jiangxi Province (20171BAB202017)
  • 摘要: 為提高對(duì)隨機(jī)脈沖噪聲(RVIN)圖像的降噪效果,該文提出一種被稱為雙通道降噪卷積神經(jīng)網(wǎng)絡(luò)(D-DnCNN)的RVIN深度降噪模型。首先,提取多個(gè)不同階對(duì)數(shù)差值排序(ROLD)統(tǒng)計(jì)值及1個(gè)邊緣特征統(tǒng)計(jì)值構(gòu)成描述圖塊中心像素點(diǎn)是否為RVIN噪聲的噪聲感知特征矢量。其次,利用預(yù)先訓(xùn)練好的深度置信網(wǎng)絡(luò)(DBN)預(yù)測(cè)模型實(shí)現(xiàn)特征矢量到噪聲標(biāo)簽的映射,完成對(duì)噪聲圖像中噪聲點(diǎn)的檢測(cè)。再次,在噪聲檢測(cè)標(biāo)簽的指示下采用Delaunay三角剖分插值算法快速修復(fù)噪聲像素點(diǎn)從而獲得初步復(fù)原圖像。最后,將初步復(fù)原圖像作為參考圖像與噪聲圖像聯(lián)接(concatenate)后輸入D-DnCNN模型后獲得殘差圖像,將參考圖像減去殘差圖像即可獲得降噪后圖像。實(shí)驗(yàn)數(shù)據(jù)表明:D-DnCNN模型在各個(gè)噪聲比例下的降噪效果均顯著超過了現(xiàn)有的經(jīng)典開關(guān)型RVIN降噪算法,與普通的單通道RVIN深度降噪模型相比也有較大幅度提升。
  • 圖  1  基于DBN的噪聲標(biāo)簽矩陣生成流程

    圖  2  利用Delaunay三角剖分插值算法對(duì)Lena噪聲圖像復(fù)原效果

    圖  3  帶輔助通道的CNN深度卷積神經(jīng)網(wǎng)絡(luò)的RVIN降噪模型框架

    圖  4  各算法對(duì)Lena圖像降噪的效果對(duì)比

    表  1  DBN網(wǎng)絡(luò)在Set12測(cè)試集圖像上的預(yù)測(cè)準(zhǔn)確性

    圖像20%噪聲40%噪聲60%噪聲檢測(cè)正確率均值
    FalseMissAccuracyFalseMissAccuracyFalseMissAccuracy
    Cameraman83822570.9528191439520.9105386340620.87910.9141
    House20918960.967991136650.9302243041230.90000.9327
    Peppers40025240.9554125444020.9137346244890.87870.9159
    Starfish53632170.9427159457530.8879555846470.84430.8916
    Monarch48927760.9502177347880.8999429143130.86870.9063
    Airplane110825160.9447197945140.9009428642030.87050.9054
    Parrot58827230.9495187744650.9032437442040.86910.9073
    Lena75583030.96542342155740.93179976173360.89580.9310
    Barbara2219123930.94438329221470.883725515185550.83190.8866
    Boat1758106200.95645318190010.907216137186450.86730.9103
    Man171497170.95643976177120.917313760184590.87710.9169
    Couple2027110490.95015553196950.903716993190320.86260.9055
    下載: 導(dǎo)出CSV

    表  2  不同噪聲比例下各個(gè)降噪算法在BSD68測(cè)試圖像集上所獲得的PSNR均值 (dB)

    算法噪聲比例(%)
    102030405060
    ROLD-EPR30.2428.2626.9725.9625.0423.98
    ASWM28.9027.9927.0125.8223.8421.05
    ROR-NLM27.2926.6725.8824.6922.7320.14
    WCSR30.1127.9326.5525.5124.5223.49
    ALOHA31.7529.0425.1323.7421.8118.79
    WIN5-RB34.6731.4629.0227.1125.4623.68
    RED-Net33.1130.6828.8727.2925.8124.37
    LSM-NLR28.8626.8525.5924.6323.7622.86
    S-DnCNN35.76 32.4130.1027.7926.1524.20
    本文D-DnCNN35.7132.72 30.56 28.62 26.76 25.31
    下載: 導(dǎo)出CSV

    表  3  D-DnCNN與S-DnCNN算法在真實(shí)噪聲圖像集上降噪效果PSNR對(duì)比(dB)

    對(duì)比算法圖像編號(hào)均值
    12345678910
    S-DnCNN46.8543.7952.9849.6447.5443.5252.4743.5842.2440.6646.32
    本文D-DnCNN47.4544.5654.2050.3248.2744.1053.8145.2643.1743.1747.43
    下載: 導(dǎo)出CSV

    表  4  各算法執(zhí)行時(shí)間的比較(s)

    算法執(zhí)行時(shí)間算法執(zhí)行時(shí)間
    ROLD-EPR5.6WIN5RB22.8
    ASWM86.3LSM-NLR257.2
    ROR-NLM43.1RED-Net5.3
    WCSR1085.1S-DnCNN4.1
    ALOHA1875.2D-DnCNN5.3
    下載: 導(dǎo)出CSV
  • 馬濟(jì)通, 邱天爽, 李蓉, 等. 脈沖噪聲下基于Renyi熵的分?jǐn)?shù)低階雙模盲均衡算法[J]. 電子與信息學(xué)報(bào), 2018, 40(2): 378–385. doi: 10.11999/JEIT170366

    MA Jitong, QIU Tianshuang, LI Rong, et al. Dual-mode blind equalization algorithm based on Renyi entropy and fractional lower order statistics under impulsive noise[J]. Journal of Electronics &Information Technology, 2018, 40(2): 378–385. doi: 10.11999/JEIT170366
    徐少平, 張貴珍, 李崇禧, 等. 基于深度置信網(wǎng)絡(luò)的隨機(jī)脈沖噪聲快速檢測(cè)算法[J]. 電子與信息學(xué)報(bào), 2019, 41(5): 1130–1136. doi: 10.11999/JEIT180558

    XU Shaoping, ZHANG Guizhen, LI Chongxi, et al. A fast random-valued impulse noise detection algorithm based on deep belief network[J]. Journal of Electronics &Information Technology, 2019, 41(5): 1130–1136. doi: 10.11999/JEIT180558
    GARNETT R, HUEGERICH T, CHUI C, et al. A universal noise removal algorithm with an impulse detector[J]. IEEE Transactions on Image Processing, 2005, 14(11): 1747–1754. doi: 10.1109/TIP.2005.857261
    DONG Yiqiu, CHAN R H, and XU Shufang. A detection statistic for random-valued impulse noise[J]. IEEE Transactions on Image Processing, 2007, 16(4): 1112–1120. doi: 10.1109/TIP.2006.891348
    ROY A, SINGHA J, DEVI S S, et al. Impulse noise removal using SVM classification based fuzzy filter from gray scale images[J]. Signal Processing, 2016, 128: 262–273. doi: 10.1016/j.sigpro.2016.04.007
    SOLEIMANY S and HAMGHALAM M. A novel random-valued impulse noise detector based on MLP neural network classifier[C]. 2017 Artificial Intelligence and Robotics, Qazvin, Iran, 2017: 165–169. doi: 10.1109/RIOS.2017.7956461.
    ZHANG Kai, ZUO Wangmeng, CHEN Yunjin, et al. Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142–3155. doi: 10.1109/TIP.2017.2662206
    ZHANG Kai, ZUO Wangmeng, and ZHANG Lei. FFDNet: Toward a fast and flexible solution for CNN-based image denoising[J]. IEEE Transactions on Image Processing, 2018, 27(9): 4608–4622. doi: 10.1109/TIP.2018.2839891
    GUO Shi, YAN Zifei, ZHANG Kai, et al. Toward convolutional blind denoising of real photographs[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 1712–1722. doi: 10.1109/CVPR.2019.00181.
    YU Hancheng, ZHAO Li, and WANG Haixian. An efficient procedure for removing random-valued impulse noise in images[J]. IEEE Signal Processing Letters, 2008, 15: 922–925. doi: 10.1109/LSP.2008.2005051
    SUN Jiande, LIU Xiaocui, WAN Wenbo, et al. Video hashing based on appearance and attention features fusion via DBN[J]. Neurocomputing, 2016, 213: 84–94. doi: 10.1016/j.neucom.2016.05.098
    AKKOUL S, LEDEE R, LECONGE R, et al. A new adaptive switching median filter[J]. IEEE Signal Processing Letters, 2010, 17(6): 587–590. doi: 10.1109/LSP.2010.2048646
    XIONG Bo and YIN Zhouping. A universal denoising framework with a new impulse detector and nonlocal means[J]. IEEE Transactions on Image Processing, 2012, 21(4): 1663–1675. doi: 10.1109/TIP.2011.2172804
    CHEN C L P, LIU Licheng, CHEN Long, et al. Weighted couple sparse representation with classified regularization for impulse noise removal[J]. IEEE Transactions on Image Processing, 2015, 24(11): 4014–4026. doi: 10.1109/TIP.2015.2456432
    JIN K H and YE J C. Sparse and low-rank decomposition of a Hankel structured matrix for impulse noise removal[J]. IEEE Transactions on Image Processing, 2018, 27(3): 1448–1461. doi: 10.1109/TIP.2017.2771471
    LIU Peng and FANG Ruogu. Learning pixel-distribution prior with wider convolution for image denoising[EB/OL]. https://arxiv.org/abs/1707.09135, 2017.
    MAO Xiaojiao, SHEN Chunhua, and YANG Yubin. Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections[C]. The 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 2016: 2810–2818.
    HUANG Tao, DONG Weisheng, XIE Xuemei, et al. Mixed noise removal via Laplacian scale mixture modeling and nonlocal low-rank approximation[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3171–3186. doi: 10.1109/TIP.2017.2676466
    ARBELáEZ P, MAIRE M, FOWLKES C, et al. Contour detection and hierarchical image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(5): 898–916. doi: 10.1109/TPAMI.2010.161
    YUE Zongsheng, YONG Hongwei, ZHAO Qian, et al. Variational denoising network: Toward blind noise modeling and removal[EB/OL]. https://arxiv.org/abs/1908.11314v1, 2019.
  • 加載中
圖(4) / 表(4)
計(jì)量
  • 文章訪問數(shù):  2164
  • HTML全文瀏覽量:  801
  • PDF下載量:  73
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-10-16
  • 修回日期:  2020-07-20
  • 網(wǎng)絡(luò)出版日期:  2020-07-30
  • 刊出日期:  2020-10-13

目錄

    /

    返回文章
    返回