采用雙通道卷積神經(jīng)網(wǎng)絡(luò)構(gòu)建的隨機(jī)脈沖噪聲深度降噪模型
doi: 10.11999/JEIT190796
-
南昌大學(xué)信息工程學(xué)院 南昌 330031
A Dual-Channel Deep Convolutional Neural Network Model for Random-Valued Impulse Noise Removal
-
School of Information Engineering, Nanchang University, Nanchang 330031, China
-
摘要: 為提高對(duì)隨機(jī)脈沖噪聲(RVIN)圖像的降噪效果,該文提出一種被稱為雙通道降噪卷積神經(jīng)網(wǎng)絡(luò)(D-DnCNN)的RVIN深度降噪模型。首先,提取多個(gè)不同階對(duì)數(shù)差值排序(ROLD)統(tǒng)計(jì)值及1個(gè)邊緣特征統(tǒng)計(jì)值構(gòu)成描述圖塊中心像素點(diǎn)是否為RVIN噪聲的噪聲感知特征矢量。其次,利用預(yù)先訓(xùn)練好的深度置信網(wǎng)絡(luò)(DBN)預(yù)測(cè)模型實(shí)現(xiàn)特征矢量到噪聲標(biāo)簽的映射,完成對(duì)噪聲圖像中噪聲點(diǎn)的檢測(cè)。再次,在噪聲檢測(cè)標(biāo)簽的指示下采用Delaunay三角剖分插值算法快速修復(fù)噪聲像素點(diǎn)從而獲得初步復(fù)原圖像。最后,將初步復(fù)原圖像作為參考圖像與噪聲圖像聯(lián)接(concatenate)后輸入D-DnCNN模型后獲得殘差圖像,將參考圖像減去殘差圖像即可獲得降噪后圖像。實(shí)驗(yàn)數(shù)據(jù)表明:D-DnCNN模型在各個(gè)噪聲比例下的降噪效果均顯著超過了現(xiàn)有的經(jīng)典開關(guān)型RVIN降噪算法,與普通的單通道RVIN深度降噪模型相比也有較大幅度提升。
-
關(guān)鍵詞:
- 圖像處理 /
- 隨機(jī)脈沖噪聲 /
- 雙通道降噪卷積神經(jīng)網(wǎng)絡(luò) /
- 參考圖像 /
- 噪聲感知特征 /
- 噪聲檢測(cè) /
- 插值
Abstract: A Dual-channel Denoising Convolutional Neural Network (D-DnCNN) model for the removal of Random-Valued Impulse Noise (RVIN) is proposed. To obtain the reference image quickly, several Rank-Ordered Logarithmic absolute Difference (ROLD) statistics and one edge feature statistic are first extracted from a local window to construct a RVIN-aware feature vector which can describe the central pixel of the patch is RVIN or not. Next, a noise detector based on Deep Belief Network (DBN) is trained to map the extracted feature vectors to their corresponding noise labels to detect all noise-like pixels in the observed image. Then, under the guidance of noise labels, the Delaunay triangulation-based interpolation algorithm is exploited to restore all detected noise-like pixels quickly and generate a preliminary restored image used as reference image. Finally, the reference image and the noisy image are simultaneously fed into the D-DnCNN model to output its corresponding residual image, and the final restored image can be obtained by subtracting the residual image from the noisy image. Extensive experimental results show that, the denoising effect of the proposed D-DnCNN denoising model outperforms the existing state-of-art switching ones across a range of noise ratios, and it also works better than the ordinary single-channel DnCNN model. -
表 1 DBN網(wǎng)絡(luò)在Set12測(cè)試集圖像上的預(yù)測(cè)準(zhǔn)確性
圖像 20%噪聲 40%噪聲 60%噪聲 檢測(cè)正確率均值 False Miss Accuracy False Miss Accuracy False Miss Accuracy Cameraman 838 2257 0.9528 1914 3952 0.9105 3863 4062 0.8791 0.9141 House 209 1896 0.9679 911 3665 0.9302 2430 4123 0.9000 0.9327 Peppers 400 2524 0.9554 1254 4402 0.9137 3462 4489 0.8787 0.9159 Starfish 536 3217 0.9427 1594 5753 0.8879 5558 4647 0.8443 0.8916 Monarch 489 2776 0.9502 1773 4788 0.8999 4291 4313 0.8687 0.9063 Airplane 1108 2516 0.9447 1979 4514 0.9009 4286 4203 0.8705 0.9054 Parrot 588 2723 0.9495 1877 4465 0.9032 4374 4204 0.8691 0.9073 Lena 755 8303 0.9654 2342 15574 0.9317 9976 17336 0.8958 0.9310 Barbara 2219 12393 0.9443 8329 22147 0.8837 25515 18555 0.8319 0.8866 Boat 1758 10620 0.9564 5318 19001 0.9072 16137 18645 0.8673 0.9103 Man 1714 9717 0.9564 3976 17712 0.9173 13760 18459 0.8771 0.9169 Couple 2027 11049 0.9501 5553 19695 0.9037 16993 19032 0.8626 0.9055 下載: 導(dǎo)出CSV
表 2 不同噪聲比例下各個(gè)降噪算法在BSD68測(cè)試圖像集上所獲得的PSNR均值 (dB)
算法 噪聲比例(%) 10 20 30 40 50 60 ROLD-EPR 30.24 28.26 26.97 25.96 25.04 23.98 ASWM 28.90 27.99 27.01 25.82 23.84 21.05 ROR-NLM 27.29 26.67 25.88 24.69 22.73 20.14 WCSR 30.11 27.93 26.55 25.51 24.52 23.49 ALOHA 31.75 29.04 25.13 23.74 21.81 18.79 WIN5-RB 34.67 31.46 29.02 27.11 25.46 23.68 RED-Net 33.11 30.68 28.87 27.29 25.81 24.37 LSM-NLR 28.86 26.85 25.59 24.63 23.76 22.86 S-DnCNN 35.76 32.41 30.10 27.79 26.15 24.20 本文D-DnCNN 35.71 32.72 30.56 28.62 26.76 25.31 下載: 導(dǎo)出CSV
表 3 D-DnCNN與S-DnCNN算法在真實(shí)噪聲圖像集上降噪效果PSNR對(duì)比(dB)
對(duì)比算法 圖像編號(hào) 均值 1 2 3 4 5 6 7 8 9 10 S-DnCNN 46.85 43.79 52.98 49.64 47.54 43.52 52.47 43.58 42.24 40.66 46.32 本文D-DnCNN 47.45 44.56 54.20 50.32 48.27 44.10 53.81 45.26 43.17 43.17 47.43 下載: 導(dǎo)出CSV
表 4 各算法執(zhí)行時(shí)間的比較(s)
算法 執(zhí)行時(shí)間 算法 執(zhí)行時(shí)間 ROLD-EPR 5.6 WIN5RB 22.8 ASWM 86.3 LSM-NLR 257.2 ROR-NLM 43.1 RED-Net 5.3 WCSR 1085.1 S-DnCNN 4.1 ALOHA 1875.2 D-DnCNN 5.3 下載: 導(dǎo)出CSV
-
馬濟(jì)通, 邱天爽, 李蓉, 等. 脈沖噪聲下基于Renyi熵的分?jǐn)?shù)低階雙模盲均衡算法[J]. 電子與信息學(xué)報(bào), 2018, 40(2): 378–385. doi: 10.11999/JEIT170366MA Jitong, QIU Tianshuang, LI Rong, et al. Dual-mode blind equalization algorithm based on Renyi entropy and fractional lower order statistics under impulsive noise[J]. Journal of Electronics &Information Technology, 2018, 40(2): 378–385. doi: 10.11999/JEIT170366 徐少平, 張貴珍, 李崇禧, 等. 基于深度置信網(wǎng)絡(luò)的隨機(jī)脈沖噪聲快速檢測(cè)算法[J]. 電子與信息學(xué)報(bào), 2019, 41(5): 1130–1136. doi: 10.11999/JEIT180558XU Shaoping, ZHANG Guizhen, LI Chongxi, et al. A fast random-valued impulse noise detection algorithm based on deep belief network[J]. Journal of Electronics &Information Technology, 2019, 41(5): 1130–1136. doi: 10.11999/JEIT180558 GARNETT R, HUEGERICH T, CHUI C, et al. A universal noise removal algorithm with an impulse detector[J]. IEEE Transactions on Image Processing, 2005, 14(11): 1747–1754. doi: 10.1109/TIP.2005.857261 DONG Yiqiu, CHAN R H, and XU Shufang. A detection statistic for random-valued impulse noise[J]. IEEE Transactions on Image Processing, 2007, 16(4): 1112–1120. doi: 10.1109/TIP.2006.891348 ROY A, SINGHA J, DEVI S S, et al. Impulse noise removal using SVM classification based fuzzy filter from gray scale images[J]. Signal Processing, 2016, 128: 262–273. doi: 10.1016/j.sigpro.2016.04.007 SOLEIMANY S and HAMGHALAM M. A novel random-valued impulse noise detector based on MLP neural network classifier[C]. 2017 Artificial Intelligence and Robotics, Qazvin, Iran, 2017: 165–169. doi: 10.1109/RIOS.2017.7956461. ZHANG Kai, ZUO Wangmeng, CHEN Yunjin, et al. Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142–3155. doi: 10.1109/TIP.2017.2662206 ZHANG Kai, ZUO Wangmeng, and ZHANG Lei. FFDNet: Toward a fast and flexible solution for CNN-based image denoising[J]. IEEE Transactions on Image Processing, 2018, 27(9): 4608–4622. doi: 10.1109/TIP.2018.2839891 GUO Shi, YAN Zifei, ZHANG Kai, et al. Toward convolutional blind denoising of real photographs[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 1712–1722. doi: 10.1109/CVPR.2019.00181. YU Hancheng, ZHAO Li, and WANG Haixian. An efficient procedure for removing random-valued impulse noise in images[J]. IEEE Signal Processing Letters, 2008, 15: 922–925. doi: 10.1109/LSP.2008.2005051 SUN Jiande, LIU Xiaocui, WAN Wenbo, et al. Video hashing based on appearance and attention features fusion via DBN[J]. Neurocomputing, 2016, 213: 84–94. doi: 10.1016/j.neucom.2016.05.098 AKKOUL S, LEDEE R, LECONGE R, et al. A new adaptive switching median filter[J]. IEEE Signal Processing Letters, 2010, 17(6): 587–590. doi: 10.1109/LSP.2010.2048646 XIONG Bo and YIN Zhouping. A universal denoising framework with a new impulse detector and nonlocal means[J]. IEEE Transactions on Image Processing, 2012, 21(4): 1663–1675. doi: 10.1109/TIP.2011.2172804 CHEN C L P, LIU Licheng, CHEN Long, et al. Weighted couple sparse representation with classified regularization for impulse noise removal[J]. IEEE Transactions on Image Processing, 2015, 24(11): 4014–4026. doi: 10.1109/TIP.2015.2456432 JIN K H and YE J C. Sparse and low-rank decomposition of a Hankel structured matrix for impulse noise removal[J]. IEEE Transactions on Image Processing, 2018, 27(3): 1448–1461. doi: 10.1109/TIP.2017.2771471 LIU Peng and FANG Ruogu. Learning pixel-distribution prior with wider convolution for image denoising[EB/OL]. https://arxiv.org/abs/1707.09135, 2017. MAO Xiaojiao, SHEN Chunhua, and YANG Yubin. Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections[C]. The 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 2016: 2810–2818. HUANG Tao, DONG Weisheng, XIE Xuemei, et al. Mixed noise removal via Laplacian scale mixture modeling and nonlocal low-rank approximation[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3171–3186. doi: 10.1109/TIP.2017.2676466 ARBELáEZ P, MAIRE M, FOWLKES C, et al. Contour detection and hierarchical image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(5): 898–916. doi: 10.1109/TPAMI.2010.161 YUE Zongsheng, YONG Hongwei, ZHAO Qian, et al. Variational denoising network: Toward blind noise modeling and removal[EB/OL]. https://arxiv.org/abs/1908.11314v1, 2019. -