Research on Ka-band Solid-state Power Amplifier Module Packages Using a Lid of Nails
-
Nanjing Electronic Devices Institute, Nanjing 210016, China
-
摘要: 為了抑制一定頻帶內(nèi)的平行板和腔體諧振模式,提高功率放大器工作的穩(wěn)定性。該文提出了一種人工磁導(dǎo)體(AMC)邊界作為腔體封裝的Ka波段固態(tài)功率放大模塊。人工磁導(dǎo)體邊界通過周期性金屬銷釘構(gòu)成的電磁帶隙(EBG)抑制結(jié)構(gòu)實(shí)現(xiàn)。對Ka波段固態(tài)功率模塊進(jìn)行了設(shè)計(jì)、加工、裝配和測試。由仿真和測試得到的S參數(shù)數(shù)據(jù),詳細(xì)地評估討論了該封裝的性能。通過對比其他封裝結(jié)構(gòu),功率模塊的無源測試結(jié)果證明金屬銷釘封裝可以有效抑制腔體諧振,提高功放模塊隔離度。功率模塊的有源功率測試則表明金屬銷釘封裝不會(huì)影響放大器輸出功率。
-
關(guān)鍵詞:
- 人工磁導(dǎo)體 /
- 電磁帶隙 /
- 封裝 /
- 諧振 /
- 功率放大器
Abstract: In order to dampen the parallel plate modes and cavity modes within the frequency range of interest, and improve the stability of power amplifiers, a Ka-band solid-state power amplifier module, which is packaged with an Artificial Magnetic Conductors (AMC) boundary is presented in this paper. The AMC boundary is realized with Electromagnetic Band Gap (EBG) which is constructed by a period of metal nails in this paper. A Ka-band solid-state power amplifier module is designed, fabricated, assembled and measured. Performances of the packages are evaluated and discussed in detail on the basis of a series of S-parameter simulations and measurements. By compare with other packaging conditions, an improved module isolation and a suppressed cavity resonance are observed from passive measured results. Active measured results indicate that the package does not interfere with output power of the amplifier. -
表 1 封裝腔體本征模諧振頻率仿真結(jié)果(GHz)
包含銷釘陣列 不含銷釘陣列 25.1 31.8 25.5 42.3 26.7 52.8 27.5 54.6 49.8 56.4 52.5 57.7 下載: 導(dǎo)出CSV
-
賈海昆, 池保勇. 硅基毫米波雷達(dá)芯片研究現(xiàn)狀與發(fā)展[J]. 電子與信息學(xué)報(bào), 2020, 42(1): 173–190. doi: 10.11999/JEIT190666JIA Haikun and CHI Baoyong. The status and trends of silicon-based millimeter-wave radar SoCs[J]. Journal of Electronics &Information Technology, 2020, 42(1): 173–190. doi: 10.11999/JEIT190666 DIXON P. Cavity-resonance dampening[J]. IEEE Microwave Magazine, 2005, 6(2): 74–84. doi: 10.1109/MMW.2005.1491270 WILLIAMS D F. Damping of the resonant modes of a rectangular metal package (MMICs)[J]. IEEE Transactions on Microwave Theory and Techniques, 1989, 37(1): 253–256. doi: 10.1109/22.20046 KUANG Ken, KIM F, and CAHILL S S. RF and Microwave Microelectronics Packaging[M]. Boston: Springer, 2010: 3–19. doi: 10.1007/978-1-4419-0984-8. SIEVENPIPER D, ZHANG Lijun, BROAS R F J, et al. High-impedance electromagnetic surfaces with a forbidden frequency band[J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2059–2074. doi: 10.1109/22.798001 KILDAL P S, ALFONSO E, VALERO-NOGUEIRA A, et al. Local metamaterial-based waveguides in gaps between parallel metal plates[J]. IEEE Antennas and Wireless Propagation Letters, 2009, 8: 84–87. doi: 10.1109/LAWP.2008.2011147 EBRAHIMPOURI M, RAJO-IGLESIAS E, SIPUS Z, et al. Cost-effective gap waveguide technology based on glide-symmetric holey EBG structures[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(2): 927–934. doi: 10.1109/TMTT.2017.2764091 BAYAT-MAKOU N and KISHK A A. Realistic air-filled TEM printed parallel-plate waveguide based on ridge gap waveguide[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(5): 2128–2140. doi: 10.1109/TMTT.2018.2811487 AHMADI B and BANAI A. Substrateless amplifier module realized by ridge gap waveguide technology for millimeter-wave applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(11): 3623–3630. doi: 10.1109/TMTT.2016.2607177 ALI M M M and SEBAK A. Printed RGW circularly polarized differential feeding antenna array for 5G communications[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(5): 3151–3160. doi: 10.1109/TAP.2019.2900411 DABAS T, GANGWAR D, KANAUJIA B K, et al. Mutual coupling reduction between elements of UWB MIMO antenna using small size uniplanar EBG exhibiting multiple stop bands[J]. AEU-International Journal of Electronics and Communications, 2018, 93: 32–38. doi: 10.1016/j.aeue.2018.05.033 JAM S and SIMRUNI M. Performance enhancement of a compact wideband patch antenna array using EBG structures[J]. AEU-International Journal of Electronics and Communications, 2018, 89: 42–55. doi: 10.1016/j.aeue.2018.03.026 VOSOOGH A, SORKHERIZI M S, ZAMAN A U, et al. An integrated ka-band diplexer-antenna array module based on gap waveguide technology with simple mechanical assembly and no electrical contact requirements[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(2): 962–972. doi: 10.1109/TMTT.2017.2757469 王彥虎, 廖永波, 付晨陽. 新型電磁材料結(jié)構(gòu)的微帶天線設(shè)計(jì)[J]. 傳感器與微系統(tǒng), 2017, 36(1): 98–100, 104. doi: 10.13873/J.1000-9787(2017)01-0098-03WANG Yanhu, LIAO Yongbo, and FU chenyang. Design of microstrip antenna based on novel electromagnetic material structure[J]. Transducer and Microsystem Technologies, 2017, 36(1): 98–100, 104. doi: 10.13873/J.1000-9787(2017)01-0098-03 BARTH S and IYER A K. A miniaturized uniplanar metamaterial-based EBG for parallel-plate mode suppression[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(4): 1176–1185. doi: 10.1109/TMTT.2016.2532870 BRAZALEZ A A, ZAMAN A U, and KILDAL P S, et al. Improved microstrip filters using PMC packaging by lid of nails[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2012, 2(7): 1075–1084. doi: 10.1109/TCPMT.2012.2190931 RAJO-IGLESIAS E, ZAMAN A U, and KILDAL P S. Parallel plate cavity mode suppression in microstrip circuit packages using a lid of nails[J]. IEEE Microwave and Wireless Components Letters, 2010, 20(1): 31–33. doi: 10.1109/LMWC.2009.2035960 史凌峰, 王海鵬. 一種擴(kuò)展蘑菇型EBG結(jié)構(gòu)阻帶帶寬的新方法[J]. 電子與信息學(xué)報(bào), 2012, 34(10): 2537–2540. doi: 10.3724/SP.J.1146.2012.00141SHI Lingfeng and WANG Haipeng. Novel method to broaden the stop-band width of the mushroom-like electromagnetic band gap structure[J]. Journal of Electronics &Information Technology, 2012, 34(10): 2537–2540. doi: 10.3724/SP.J.1146.2012.00141 陳朋, 汝巖, 廖立科. 一種適用于同步開關(guān)噪聲抑制的共面電磁帶隙新結(jié)構(gòu)[J]. 電子與信息學(xué)報(bào), 2014, 36(11): 2775–2780. doi: 10.3724/SP.J.1146.2013.01987CHEN Peng, RU Yan, and LIAO Like. A novel planar electromagnetic band-gap structure for SSN suppression[J]. Journal of Electronics &Information Technology, 2014, 36(11): 2775–2780. doi: 10.3724/SP.J.1146.2013.01987 JOO S H, KIM D Y, and LEE H Y. A S-bridged inductive electromagnetic bandgap power plane for suppression of ground bounce noise[J]. IEEE Microwave and Wireless Components Letters, 2007, 17(10): 709–711. doi: 10.1109/LMWC.2007.905604 閆敦豹. 人工磁導(dǎo)體結(jié)構(gòu)及其應(yīng)用研究[D]. [博士論文], 國防科學(xué)技術(shù)大學(xué), 2006: 43–72.YAN Dunbao. Study on artificial magnetic conductorsand applications[D]. [Ph.D. dissertation], National University of Defense Technology, 2006: 43–72. -