一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

使用能量匹配的監(jiān)控視頻自適應(yīng)速率壓縮感知

王健明 陳建華

王健明, 陳建華. 使用能量匹配的監(jiān)控視頻自適應(yīng)速率壓縮感知[J]. 電子與信息學(xué)報(bào), 2020, 42(12): 3021-3028. doi: 10.11999/JEIT190750
引用本文: 王健明, 陳建華. 使用能量匹配的監(jiān)控視頻自適應(yīng)速率壓縮感知[J]. 電子與信息學(xué)報(bào), 2020, 42(12): 3021-3028. doi: 10.11999/JEIT190750
Jianming WANG, Jianhua CHEN. Adaptive-Rate Compressive Sensing Using Energy Matching for Monitoring Video[J]. Journal of Electronics & Information Technology, 2020, 42(12): 3021-3028. doi: 10.11999/JEIT190750
Citation: Jianming WANG, Jianhua CHEN. Adaptive-Rate Compressive Sensing Using Energy Matching for Monitoring Video[J]. Journal of Electronics & Information Technology, 2020, 42(12): 3021-3028. doi: 10.11999/JEIT190750

使用能量匹配的監(jiān)控視頻自適應(yīng)速率壓縮感知

doi: 10.11999/JEIT190750
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(61861045)
詳細(xì)信息
    作者簡(jiǎn)介:

    王健明:男,1984年生,博士生,研究方向?yàn)閿?shù)據(jù)壓縮

    陳建華:男,1964年生,教授,博士生導(dǎo)師,研究方向?yàn)樾畔鬏斃碚撆c應(yīng)用

    通訊作者:

    陳建華 chenjh@ynu.edu.cn

  • 中圖分類號(hào): TN911.73

Adaptive-Rate Compressive Sensing Using Energy Matching for Monitoring Video

Funds: The National Natural Science Foundation of China (61861045)
  • 摘要: 獲取信號(hào)稀疏度對(duì)壓縮感知(CS)性能的提升有重大意義,但在采樣端不進(jìn)行完整信號(hào)數(shù)字化采集和存儲(chǔ)的情況下,對(duì)信號(hào)稀疏度進(jìn)行估計(jì)比較困難?,F(xiàn)有方法在稀疏度估計(jì)性能和計(jì)算復(fù)雜度方面難以取得較好的平衡。針對(duì)采樣端對(duì)信號(hào)特性未知的監(jiān)控視頻應(yīng)用,該文提出一種新的使用能量匹配的自適應(yīng)速率壓縮感知方法(ARCS-EM),通過(guò)觀測(cè)一個(gè)恒定低速率的壓縮感知觀測(cè)結(jié)果來(lái)對(duì)當(dāng)前幀實(shí)際稀疏度進(jìn)行估計(jì),然后根據(jù)估計(jì)結(jié)果決定當(dāng)前幀應(yīng)執(zhí)行的壓縮感知測(cè)量數(shù),再進(jìn)行補(bǔ)充測(cè)量得到當(dāng)前幀的優(yōu)化壓縮感知采樣結(jié)果。實(shí)驗(yàn)結(jié)果表明,該方法可以較好地適應(yīng)視頻中前景稀疏度的變化,為每幀圖像分配適當(dāng)?shù)膲嚎s感知測(cè)量速率,在不顯著提高采樣端計(jì)算復(fù)雜度的前提下,有效提高重建視頻的質(zhì)量。
  • 圖  1  視頻序列范例

    圖  2  測(cè)試視頻稀疏程度估計(jì)表現(xiàn)

    圖  3  測(cè)試視頻采樣速率

    圖  4  測(cè)試視頻圖像重建質(zhì)量

    表  1  實(shí)驗(yàn)參數(shù)

    參數(shù)$\varSigma $$a$$b$$\tau $$r$
    視頻序列Hall2.65161288600
    視頻序列PETS2.45161288600
    下載: 導(dǎo)出CSV

    表  2  不同方法的自適壓縮感知平均性能對(duì)比

    實(shí)驗(yàn)結(jié)果Hall視頻平均壓縮
    感知采樣率
    Hall視頻平均峰值
    信噪比(dB)
    PETS視頻平均壓縮
    感知采樣率
    PETS視頻平均峰值
    信噪比(dB)
    Oracle0.204036.590.131740.02
    CDSAM方法0.229736.340.200139.53
    ARCS-CV方法0.213737.030.119139.07
    ARCS-EM方法0.223237.260.135040.26
    下載: 導(dǎo)出CSV

    表  3  采樣運(yùn)行時(shí)間對(duì)照表(ms)

    運(yùn)行時(shí)間Hall視頻T1Hall視頻T2Hall視頻T3Hall視頻TPETS視頻T1PETS視頻T2PETS視頻T3PETS視頻T
    CDSAM方法7.48104.180111.666.7694.930101.69
    ARCS-CV方法957.260.142.99×1053.00×105526.560.111.44×1051.45×105
    ARCS-EM方法800.870.420801.29498.750.510499.26
    下載: 導(dǎo)出CSV
  • CANDèS E J, ROMBERG J, and TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489–509. doi: 10.1109/TIT.2005.862083
    DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582
    CANDèS E J. The restricted isometry property and its implications for compressed sensing[J]. Comptes Rendus Mathematique, 2008, 346(9/10): 589–592. doi: 10.1016/j.crma.2008.03.014
    王鋼, 周若飛, 鄒昳琨. 基于壓縮感知理論的圖像優(yōu)化技術(shù)[J]. 電子與信息學(xué)報(bào), 2020, 42(1): 222–233. doi: 10.11999/JEIT190669

    WANG Gang, ZHOU Ruofei, and ZOU Yikun. Research on image optimization technology based on Compressed Sensing[J]. Journal of Electronics &Information Technology, 2020, 42(1): 222–233. doi: 10.11999/JEIT190669
    楊森林, 萬(wàn)國(guó)賓. 聯(lián)合結(jié)構(gòu)預(yù)測(cè)和運(yùn)動(dòng)補(bǔ)償?shù)囊曨l自適應(yīng)壓縮感知[J]. 西北大學(xué)學(xué)報(bào): 自然科學(xué)版, 2019, 49(6): 909–917. doi: 10.16152/j.cnki.xdxbzr.2019-06-010

    YANG Senlin and WAN Guobin. Adaptive compressed sensing of video by combining structural predictions and motion compensation[J]. Journal of Northwest University:Natural Science Edition, 2019, 49(6): 909–917. doi: 10.16152/j.cnki.xdxbzr.2019-06-010
    SHAHRASBI B and RAHNAVARD N. Model-based nonuniform Compressive Sampling and recovery of natural images utilizing a Wavelet-domain universal hidden Markov model[J]. IEEE Transactions on Signal Processing, 2017, 65(1): 95–104. doi: 10.1109/TSP.2016.2614654
    LAKSHMI T C S, GNANADURAI D, and MUTHULAKSHMI I. Energy conserving texture-based adaptable Compressive Sensing scheme for WVSN[J]. Concurrency and Computation: Practice and Experience, 2019: e5178. doi: 10.1002/cpe.5178
    ZHANG Xufan, WANG Yong, WANG Dianhong, et al. Adaptive image compression based on compressive sensing for video sensor nodes[J]. Multimedia Tools and Applications, 2018, 77(11): 13679–13699. doi: 10.1007/s11042-017-4981-6
    DUARTE M F, DAVENPORT M A, TAKHAR D, et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 83–91. doi: 10.1109/msp.2007.914730
    范劍英, 馬明陽(yáng), 趙首博. 基于壓縮感知高反光成像技術(shù)研究[J]. 電子與信息學(xué)報(bào), 2020, 42(4): 1013–1020. doi: 10.11999/JEIT190512

    FAN Jianying, MA Mingyang, and ZHAO Shoubo. Research on high reflective imaging technology based on compressed sensing[J]. Journal of Electronics &Information Technology, 2020, 42(4): 1013–1020. doi: 10.11999/JEIT190512
    吳新杰, 閆詩(shī)雨, 徐攀峰, 等. 基于稀疏度自適應(yīng)壓縮感知的電容層析成像圖像重建算法[J]. 電子與信息學(xué)報(bào), 2018, 40(5): 1250–1257. doi: 10.11999/JEIT170794

    WU Xinjie, YAN Shiyu, XU Panfeng, et al. Image reconstruction algorithm for electrical capacitance tomography based on sparsity adaptive Compressed Sensing[J]. Journal of Electronics &Information Technology, 2018, 40(5): 1250–1257. doi: 10.11999/JEIT170794
    SHANGGUAN Wentao, YAN Qiurong, WANG Hui, et al. Adaptive single photon compressed imaging based on constructing a smart threshold matrix[J]. Sensors, 2018, 18(10): 3449. doi: 10.3390/s18103449
    YUAN Xin, YANG Jianbo, LLULL P, et al. Adaptive temporal compressive sensing for video[C]. 2013 IEEE International Conference on Image Processing, Melbourne, Australia, 2013: 14–18. doi: 10.1109/ICIP.2013.6738004.
    WANG Yeru, TANG Chaoying, CHEN Yueting, et al. Adaptive temporal Compressive Sensing for video with motion estimation[J]. Optical Review, 2018, 25(2): 215–226. doi: 10.1007/s10043-018-0408-5
    練秋生, 田天, 陳書貞, 等. 基于變采樣率的多假設(shè)預(yù)測(cè)分塊視頻壓縮感知[J]. 電子與信息學(xué)報(bào), 2013, 35(1): 203–208. doi: 10.3724/SP.J.1146.2012.00590

    LIAN Qiusheng, TIAN Tian, CHEN Shuzhen, et al. Block compressed sensing of video based on variable sampling rates and multihypothesis predictions[J]. Journal of Electronics &Information Technology, 2013, 35(1): 203–208. doi: 10.3724/SP.J.1146.2012.00590
    LI Honggui. Compressive domain spatial–temporal difference saliency-based realtime adaptive measurement method for video recovery[J]. IET Image Processing, 2019, 13(11): 2008–2017. doi: 10.1049/iet-ipr.2019.0116
    WARNELL G, BHATTACHARYA S, CHELLAPPA R, et al. Adaptive-rate compressive sensing using side information[J]. IEEE Transactions on Image Processing, 2015, 24(11): 3846–3857. doi: 10.1109/TIP.2015.2456425
    DUARTE-CARVAJALINO J M, YU Guoshen, CARIN L, et al. Task-driven adaptive statistical compressive sensing of Gaussian mixture models[J]. IEEE Transactions on Signal Processing, 2013, 61(3): 585–600. doi: 10.1109/TSP.2012.2225054
    VAN DER BERG E and FRIEDLANDER M P. Probing the Pareto Frontier for basis pursuit solutions[J]. SIAM Journal on Scientific Computing, 2009, 31(2): 890–912. doi: 10.1137/080714488
    DONOHO D L and TANNER J. Precise undersampling theorems[J]. Proceedings of the IEEE, 2010, 98(6): 913–924. doi: 10.1109/jproc.2010.2045630
    CEVHER V, SANKARANARAYANAN A, DUARTE M F, et al. Compressive sensing for background subtraction[C]. The 10th European Conference on Computer Vision, France, Marseille, 2008: 155–168. doi: 10.1007/978-3-540-88688-4_12.
    WARD R. Compressed sensing with cross validation[J]. IEEE Transactions on Information Theory, 2009, 55(12): 5773–5782. doi: 10.1109/tit.2009.2032712
    JOHNSON W B and LINDENSTRAUSS J. Extensions of Lipschitz mappings into a Hilbert space[J]. Contemporary Mathematics, 1984, 26(12): 189–206. doi: 10.1090/conm/026/737400
  • 加載中
圖(4) / 表(3)
計(jì)量
  • 文章訪問(wèn)數(shù):  835
  • HTML全文瀏覽量:  224
  • PDF下載量:  99
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-09-29
  • 修回日期:  2020-09-27
  • 網(wǎng)絡(luò)出版日期:  2020-09-29
  • 刊出日期:  2020-12-08

目錄

    /

    返回文章
    返回