基于改進LS-ESPRIT算法的GTD模型參數(shù)估計與RCS重構(gòu)
doi: 10.11999/JEIT190747
-
1.
中國人民解放軍空軍工程大學(xué)防空反導(dǎo)學(xué)院 西安 710051
-
2.
中國人民解放軍空軍工程大學(xué)研究生院 西安 710051
GTD Model Parameters Estimation and RCS Reconstruction Based on the Improved LS-ESPRIT Algorithm
-
1.
Air and Missile Defense College of Air Force Engineering University, Xi’an 710051, China
-
2.
The Graduate School of Air Force Engineering University, Xi’an 710051, China
-
摘要: 針對傳統(tǒng)LS-ESPRIT算法在估計GTD模型參數(shù)時抗噪效果差,估計精度不高這一問題,該文提出了一種改進的LS-ESPRT算法,有效地提高了算法的參數(shù)估計性能與抗噪性。首先,根據(jù)雷達目標的回波數(shù)據(jù)構(gòu)建Hankel矩陣;其次,采用核范數(shù)凸優(yōu)化方法對上述Hankel矩陣進行降噪處理,得到低秩的重構(gòu)Hankel矩陣;最后,利用傳統(tǒng)的LS-ESPRIT算法對降噪后的數(shù)據(jù)進行處理,估計出GTD模型參數(shù)?;诟倪M算法與傳統(tǒng)算法分別得到重構(gòu)RCS,并針對不同帶寬對參數(shù)估計精度的影響作以仿真探究。仿真結(jié)果表明,與傳統(tǒng)LS-ESPRIT算法與傳統(tǒng)TLS-ESPRIT算法相比,改進LS-ESPRIT算法的參數(shù)估計性能更高,抗噪性更強,且重構(gòu)RCS的幅值與相角誤差更小。對不同帶寬下的參數(shù)估計精度也進行了探究,并得出:帶寬越大,估計精度越高。
-
關(guān)鍵詞:
- 散射中心 /
- GTD模型 /
- 凸優(yōu)化處理 /
- 改進的LS-ESPRIT算法 /
- RCS重構(gòu)
Abstract: The traditional Least Squares-Estimating Signal Parameter via Rotational Invariance Techniques (LS-ESPRIT) algorithm is not effective while estimating parameters of the Geometric Theory of Diffraction (GTD) at lower SNR. To solve this problem, an improved LS-ESPRIT algorithm is proposed in this paper. Firstly, a Hankel matrix is constructed by the echo data of radar targets.Secondly,a low- rank reconstructed Hankel matrix is obtained,which is solved by the nuclear norm convex optimization method. Finally, the traditional LS-ESPRIT algorithm is used to process the data after noise reduction and estimate the parameters of the GTD model. Moreover,the reconstructed Radar Cross Section (RCS) can be obtained by the traditional LS-ESPRIT algorithm and the improved LS-ESPRIT algorithm. The influence of different bandwidths on parameter estimation is also analyzed in this paper. Simulation results show that the estimation accuracy and noise resistance of the improved LS-ESPRIT algorithm is better than the traditional LS-ESPRIT algorithm and the traditional TLS-ESPRIT algorithm. Furthermore, the amplitude error and phase angle error of the RCS which is reconstructed by the improved algorithm are smaller than the traditional algorithm. Different bandwidths also have influences on parameter estimation accuracy, the more wider bandwidth is, the more accurate parameters can be estimated. -
表 1 典型散射結(jié)構(gòu)的
${\alpha _i}$ 取值典型散射結(jié)構(gòu) ${\alpha _i}$取值 二面角、三面角、平面法向反射 1.0 單曲面反射、圓柱面反射 0.5 雙曲面反射、球面反射 0 邊緣繞射 –0.5 尖頂繞射 –1.0 下載: 導(dǎo)出CSV
表 2 散射中心參數(shù)值
序號 位置${r_i}({\rm{m}})$ 類型${\alpha _i}$ 強度${A_i}$ 1 1.200 1.000 6.112 2 1.400 0.500 5.398 3 1.900 0 4.234 4 2.300 1.000 3.102 下載: 導(dǎo)出CSV
-
DING Baiyuan and WEN Gongjian. A region matching approach based on 3-D scattering center model with application to SAR target recognition[J]. IEEE Sensors Journal, 2018, 18(11): 4623–4632. doi: 10.1109/JSEN.2018.2828307 ZHONG Jinrong, WEN Gongjian, HUI Bingwei, et al. Three-dimensional positions of scattering centers reconstruction from multiple SAR images based on radargrammetry[J]. Journal of Central South University, 2015, 22(5): 1776–1789. doi: 10.1007/s11771-015-2696-2 HE Yang, HE Siyuan, ZHANG Yunhua, et al. A forward approach to establish parametric scattering center models for known complex radar targets applied to SAR ATR[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(12): 6192–6205. doi: 10.1109/TAP.2014.2360700 LI Tingli and DU Lan. SAR automatic target recognition based on attribute scattering center model and discriminative dictionary Learning[J]. IEEE Sensors Journal, 2019, 19(12): 4598–4611. doi: 10.1109/JSEN.2019.2901050 許少坤, 劉記紅, 袁翔宇. 基于HRRP序列的中段目標二維幾何特征反演方法[J]. 電子與信息學(xué)報, 2017, 39(10): 2366–2373. doi: 10.11999/JEIT161303XU Shaokun, LIU Jihong, and YUAN Xiangyu. Two-dimensional geometric feature inversion method for midcourse target based on HRRPs[J]. Journal of Electronics &Information Technology, 2017, 39(10): 2366–2373. doi: 10.11999/JEIT161303 ZHOU Jianxiong, SHI Zhiguang, CHENG Xiao, et al. Automatic target recognition of SAR images based on global scattering center model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3713–3729. doi: 10.1109/tgrs.2011.2162526 CHEN Xuan, WAN Baoquan, ZHAO Tao, et al. Parameter estimation of three-dimensional scattering centers based on state space and ESPRIT method[J]. Procedia Computer Science, 2019, 147: 435–440. doi: 10.1016/j.procs.2019.01.261 鄭舒予, 張小寬, 劉銘, 等. 基于一維散射中心模型的RCS頻率全角度外推[J]. 空軍工程大學(xué)學(xué)報: 自然科學(xué)版, 2020, 20(6): 79–83.ZHENG Shuyu, ZHANG Xiaokuan, LIU Ming, et al. RCS frequency full angle extrapolation based on one-dimensional scattering center model[J]. Journal of Air Force Engineering University:Natural Science Edition, 2020, 20(6): 79–83. 畢嚴先, 魏少明, 王俊, 等. 基于多假設(shè)跟蹤的散射點關(guān)聯(lián)和三維重構(gòu)方法[J]. 北京航空航天大學(xué)學(xué)報, 2016, 42(6): 1219–1227.BI Yanxian, WEI Shaoming, WANG Jun, et al. New method of scatterers association and 3D reconstruction based on multi-hypothesis tracking[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(6): 1219–1227. 王昕, 郭寶峰, 尚朝軒. 基于二維ISAR圖像序列的雷達目標三維重建方法[J]. 電子與信息學(xué)報, 2013, 35(10): 2475–2480. doi: 10.3724/SPJ1146.2013.00140WANG Xin, GUO Baofeng, and SHANG Chaoxuan. 3D reconstruction of target geometry based on 2D data of inverse synthetic aperture radar images[J]. Journal of Electronics &Information Technology, 2013, 35(10): 2475–2480. doi: 10.3724/SPJ1146.2013.00140 張磊, 何思遠, 朱國強, 等. 雷達目標三維散射中心位置正向推導(dǎo)和分析[J]. 電子與信息學(xué)報, 2018, 40(12): 2854–2860. doi: 10.11999/JEIT180115ZHANG Lei, HE Siyuan, ZHU Guoqiang, et al. Forward derivation and analysis for 3-D scattering center position of radar target[J]. Journal of Electronics &Information Technology, 2018, 40(12): 2854–2860. doi: 10.11999/JEIT180115 HURST M and MITTRA R. Scattering center analysis via Prony’s method[J]. IEEE Transactions on Antennas and Propagation, 1987, 35(8): 986–988. doi: 10.1109/TAP.1987.1144210 POTTER L C, CHIANG D M, CARRIER R, et al. A GTD-based parametric model for radar scattering[J]. IEEE Transactions on Antennas and Propagation, 1995, 43(10): 1058–1067. doi: 10.1109/8.467641 王菁, 周建江, 汪飛. 基于GTD模型的目標二維散射中心提取[J]. 電子與信息學(xué)報, 2009, 31(4): 958–962.WANG Jing, ZHOU Jianjiang, and WANG Fei. 2D scattering centers extraction of objects based on GTD model[J]. Journal of Electronics &Information Technology, 2009, 31(4): 958–962. PARIKH N and BOYD S. Proximal algorithms[J]. Foundations and Trends? in Optimization, 2014, 1(3): 127–239. doi: 10.1561/2400000003 YAN Xingwei, HU Jiemin, ZHAO Ge, et al. A new parametric estimation method for GTD model based on modified compressed sensing[J]. Progress in Electromagnetics Research, 2013, 141: 553–575. doi: 10.2528/PIER13052017 莊釗文, 王雪松, 黎湘, 等. 雷達目標識別[M]. 北京: 高等教育出版社, 2014: 193–200.ZHUANG Zhaowen, WANG Xuesong, LI Xiang, et al. Radar Target Recognition[M]. Beijing: Higher Education Press, 2014: 193–200. 張賢達. 現(xiàn)代信號處理[M]. 北京: 清華大學(xué)出版社, 2002: 56–60.ZHANG Xianda. Modern Signal Processing[M]. Beijing: Tsinghua University Press, 2002: 56–60. FAZEL M, HINDI H, and BOYD S P. A rank minimization heuristic with application to minimum order system approximation[C]. Proceedings of 2001 American Control Conference, Arlington, 2001: 4734–4739. FAZEL M. Matrix rank minimization with applications[D]. [Ph.D. dissertation], Stanford University, 2002: 27–46. -