快慢時間域聯(lián)合處理抑制頻譜彌散干擾
doi: 10.11999/JEIT190734
-
1.
海軍航空大學(xué) 煙臺 264001
-
2.
中國人民解放軍94326部隊 濟南 250000
基金項目: 國家自然科學(xué)基金(61731023, 61701519, 61671462),“泰山學(xué)者”攀登計劃專項經(jīng)費資助項目
Fast-slow Time Domain Joint Processing Suppressing Smeared Spectrum Jamming
-
1.
Naval Aviation University, Yantai 264001, China
-
2.
Unit 94326 of the PLA, Jinan 250000, China
Funds: The National Natural Science Foundation of China (61731023, 61701519, 61671462), Taishan Scholar Climbing Plan
-
摘要: 現(xiàn)有頻譜彌散干擾(SMSP)抑制算法以一個長度為雷達(dá)發(fā)射信號的受干擾回波為處理對象,未涉及相參處理間隔內(nèi)整體回波。針對此問題,該文以自衛(wèi)式干擾條件下線性調(diào)頻(LFM)相參體制雷達(dá)抗SMSP干擾為背景,提出快慢時間域聯(lián)合處理抑制SMSP干擾算法。分析了SMSP干擾時頻特征和對相參雷達(dá)的干擾特性,在此基礎(chǔ)上,設(shè)計了慢時間微分熵估計干擾位置,相關(guān)系數(shù)最大準(zhǔn)則估計干擾參數(shù),雙正交傅里葉變換快時間分段重構(gòu)干擾信號和干擾對消的抑制流程。仿真結(jié)果表明,所提算法模型與雷達(dá)處理流程切合度高,對比分析進(jìn)一步驗證算法效能。
-
關(guān)鍵詞:
- 頻譜彌散干擾 /
- 快慢時間域 /
- 聯(lián)合處理 /
- 干擾對消
Abstract: The existing SMeared SPectrum (SMSP) jamming suppression algorithms take a jammed echo whose length equal to radar transmitting signal as the processing object and do not involve the whole echo within the coherent processing interval. For this problem, a jamming suppression algorithm based on fast and slow time domain joint processing is proposed under the background of Linear Frequency Modulation (LFM) coherent radar countering SMSP jamming. The time and frequency domain characteristics of SMSP are studied and the effect on coherent radar is analyzed on the condition of self screening jamming. On this basis, four processing steps are designed to suppress the SMSP jamming. Firstly, the jamming fast time location is estimated by calculating the differential entropy of slow time signal. Secondly, the real jamming parameter is found based on the maximum correlation coefficient criterion. Then the jamming signals are reconstructed using Biorthogonal Fourier Transform. Finally, the SMSP jamming is suppressed by cancellation. The simulation results show that the proposed algorithm model is highly consistent with the actual radar processing flow, and the efficiency is further verified through algorithms comparison. -
SPARROW M J and CIKALO J. ECM techniques to counter pulse compression radar[P]. United States Patent, 7081846, 2006. 趙楊, 尚朝軒, 韓壯志, 等. 分?jǐn)?shù)階傅里葉和壓縮感知自適應(yīng)抗頻譜彌散干擾[J]. 電子與信息學(xué)報, 2019, 41(5): 1047–1054. doi: 10.11999/JEIT180569ZHAO Yang, SHANG Chaoxuan, HAN Zhuangzhi, et al. Fractional Fourier transform and compressed sensing adaptive countering smeared spectrum jamming[J]. Journal of Electronics &Information Technology, 2019, 41(5): 1047–1054. doi: 10.11999/JEIT180569 盧云龍, 李明, 曹潤清, 等. 聯(lián)合時頻分布和壓縮感知對抗頻譜彌散干擾[J]. 電子與信息學(xué)報, 2016, 38(12): 3275–3281. doi: 10.11999/JEIT160919LU Yunlong, LI Ming, CAO Runqing, et al. Jointing time-frequency distribution and compressed sensing for countering smeared spectrum jamming[J]. Journal of Electronics &Information Technology, 2016, 38(12): 3275–3281. doi: 10.11999/JEIT160919 李欣, 王春陽, 原慧, 等. 基于干擾重構(gòu)和峭度最大化的SMSP干擾抑制方法[J]. 北京航空航天大學(xué)學(xué)報, 2018, 44(6): 1176–1184. doi: 10.13700/j.bh.1001-5965.2017.0421LI Xin, WANG Chunyang, YUAN Hui, et al. SMSP jamming suppression method based on jamming reconstruction and kurtosis maximum[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(6): 1176–1184. doi: 10.13700/j.bh.1001-5965.2017.0421 尹洪偉, 李國林, 路翠華. 一種基于復(fù)值盲分離的欺騙干擾抑制算法[J]. 上海交通大學(xué)學(xué)報, 2015, 49(10): 1564–1569. doi: 10.16183/j.cnki.jsjtu.2015.10.023YIN Hongwei, LI Guolin, and LU Cuihua. An algorithm of deception jamming suppression based on complex-value Blind Source Separation[J]. Journal of Shanghai Jiaotong University, 2015, 49(10): 1564–1569. doi: 10.16183/j.cnki.jsjtu.2015.10.023 李飛, 李國林, 粘朋雷. 基于盲源分離的雷達(dá)信號欺騙干擾抑制[J]. 海軍航空工程學(xué)院學(xué)報, 2015, 30(5): 424–428. doi: 10.7682/j.issn.1673-1522.2015.05.005LI Fei, LI Guolin, and NIAN Penglei. Radar signal deception jamming suppressing based on Blind Source Separation[J]. Journal of Naval Aeronautical and Astronautical University, 2015, 30(5): 424–428. doi: 10.7682/j.issn.1673-1522.2015.05.005 ADAMY D L. EW 104: EW Against A New Generation of Threats[M]. Boston MA: Artech House, 2015: 60-64. HUO Weibo, HUANG Yulin, PEI Jifang, et al. Ship detection from ocean SAR image based on local contrast variance weighted information entropy[J]. Sensors, 2018, 18(4): 1196. doi: 10.3390/s18041196 G?KSU H. Ground moving target recognition using log energy entropy of wavelet packets[J]. Electronics Letters, 2018, 54(4): 233–235. doi: 10.1049/el.2017.4267 ZHANG Shuanghui, LIU Yongxiang, and LI Xiang. Autofocusing for sparse aperture ISAR imaging based on joint constraint of sparsity and minimum entropy[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(3): 998–1011. doi: 10.1109/JSTARS.2016.2598880 鄒本振, 張萌, 王朝. 脈沖壓縮雷達(dá)的信號包絡(luò)及檢測模型研究[J]. 中國電子科學(xué)研究院學(xué)報, 2019, 14(1): 55–60. doi: 10.3969/j.issn.1673-5692.2019.01.010ZOU Benzhen, ZHANG Meng, and WANG Chao. Research on modeling of envelope detection of pulse-compression radar[J]. Journal of CAEIT, 2019, 14(1): 55–60. doi: 10.3969/j.issn.1673-5692.2019.01.010 王本慶, 李興國. LFM信號調(diào)頻斜率的雙正交Fourier變換分析算法[J]. 電子與信息學(xué)報, 2009, 31(7): 1620–1623.WANG Benqing and LI Xingguo. Analysis algorithm to frequency rate of LFM signal based on biorthogonal Fourier transform[J]. Journal of Electronics &Information Technology, 2009, 31(7): 1620–1623. DE SENA A and ROCCHESSO D. A fast Mellin and scale transform[J]. EURASIP Journal on Advances in Signal Processing, 2007, 2007(1): 89170. doi: 10.1155/2007/89170 OZAKTAS H M, ARIKAN O, KUTAY M A, et al. Digital computation of the fractional Fourier transform[J]. IEEE Transactions on Signal Processing, 1996, 44(9): 2141–2150. doi: 10.1109/78.536672 HATEFFARD F, DOLATI P, HEIDARI A, et al. Assessing the performance of decision tree and neural network models in mapping soil properties[J]. Journal of Mountain Science, 2019, 16(8): 1833–1847. doi: 10.1007/s11629-019-5409-8 GARG H and RANI D. A robust correlation coefficient measure of complex intuitionistic fuzzy sets and their applications in decision-making[J]. Applied Intelligence, 2019, 49(2): 496–512. doi: 10.1007/s10489-018-1290-3 KRASICHKOV A S, GRIGORIEV E B, NIFONTOV E M, et al. Estimation of acceptable boundaries for the correlation coefficient in the ECG beat classification task[J]. Biomedical Engineering, 2018, 51(6): 389–393. doi: 10.1007/s10527-018-9756-5 -