移動(dòng)邊緣計(jì)算中分布式異構(gòu)任務(wù)卸載算法
doi: 10.11999/JEIT190728
-
重慶郵電大學(xué)移動(dòng)通信技術(shù)重慶市重點(diǎn)實(shí)驗(yàn)室 重慶 400065
A Distributed Heterogeneous Task Offloading Methodology for Mobile Edge Computing
-
Chongqing Key Laboratory of Mobile Communication Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
-
摘要:
隨著物聯(lián)網(wǎng)(IoT)迅速發(fā)展,移動(dòng)邊緣計(jì)算(MEC)在提供高性能、低延遲計(jì)算服務(wù)方面的作用日益明顯。然而,在面向IoT業(yè)務(wù)的MEC(MEC-IoT)時(shí)變環(huán)境中,不同邊緣設(shè)備和應(yīng)用業(yè)務(wù)在時(shí)延和能耗等方面具有顯著的異構(gòu)性,對(duì)高效的任務(wù)卸載及資源分配構(gòu)成嚴(yán)峻挑戰(zhàn)。針對(duì)上述問(wèn)題,該文提出一種動(dòng)態(tài)的分布式異構(gòu)任務(wù)卸載算法(D2HM),該算法利用分布式博弈機(jī)制并結(jié)合李雅普諾夫優(yōu)化理論,設(shè)計(jì)了一種資源的動(dòng)態(tài)報(bào)價(jià)機(jī)制,并實(shí)現(xiàn)了對(duì)不同業(yè)務(wù)類(lèi)型差異化控制和計(jì)算資源的彈性按需分配,仿真結(jié)果表明,所提的算法可以滿足異構(gòu)任務(wù)的多樣化計(jì)算需求,并在保證網(wǎng)絡(luò)穩(wěn)定性的前提下降低系統(tǒng)的平均時(shí)延。
-
關(guān)鍵詞:
- 邊緣計(jì)算 /
- 物聯(lián)網(wǎng) /
- 博弈論 /
- 李雅普諾夫優(yōu)化 /
- 異構(gòu)任務(wù)卸載
Abstract:With the rapid development of the Internet of Things (IoT), Mobile Edge Computing (MEC) becomes increasingly effective in improving processing capacity and providing low-latency computing services. However, in the time-varying MEC-IoT environment, heterogeneous devices and applications cause serious challenges on efficient task offloading and resource allocation. A Distributed Dynamic Heterogeneous task offloading Methodology (D2HM) algorithm is proposed in this paper by exploiting game theory and Lyapunov optimization, which can achieves heterogeneous control and allocation of computation resources by dynamic quote price mechanism. Simulation results show that the proposed algorithm can meet the diverse computing needs of heterogeneous tasks and reduce the average delay of the system while ensuring network stability.
-
CISCO. Cisco visual networking index: Forecast and trends, 2017–2022[R]. 2018. MOURA J and HUTCHISON D. Game theory for multi-access edge computing: Survey, use cases, and future trends[J]. IEEE Communications Surveys & Tutorials, 2019, 21(1): 260–288. doi: 10.1109/COMST.2018.2863030 YU Wei, LIANG Fan, HE Xiaofei, et al. A survey on the edge computing for the internet of things[J]. IEEE Access, 2018, 6: 6900–6919. doi: 10.1109/ACCESS.2017.2778504 YOU Changsheng, HUANG Kaibin, CHAE H, et al. Energy-efficient resource allocation for mobile-edge computation offloading[J]. IEEE Transactions on Wireless Communications, 2017, 16(3): 1397–1411. doi: 10.1109/TWC.2016.2633522 代美玲, 劉周斌, 郭少勇, 等. 基于終端能耗和系統(tǒng)時(shí)延最小化的邊緣計(jì)算卸載及資源分配機(jī)制[J]. 電子與信息學(xué)報(bào), 2019, 41(11): 2684–2690. doi: 10.11999/JEIT180970DAI Meiling, LIU Zhoubin, GUO Shaoyong, et al. A computation offloading and resource allocation mechanism based on minimizing devices energy consumption and system delay[J]. Journal of Electronics &Information Technology, 2019, 41(11): 2684–2690. doi: 10.11999/JEIT180970 WANG Shuo, ZHANG Xing, YAN Zhi, et al. Cooperative edge computing with sleep control under nonuniform traffic in mobile edge networks[J]. IEEE Internet of Things Journal, 2019, 6(3): 4295–4306. doi: 10.1109/JIOT.2018.2875939 張海波, 欒秋季, 朱江, 等. 基于移動(dòng)邊緣計(jì)算的V2X任務(wù)卸載方案[J]. 電子與信息學(xué)報(bào), 2018, 40(11): 2736–2743. doi: 10.11999/JEIT180027ZHANG Haibo, LUAN Qiuji, ZHU Jiang, et al. V2X task offloading scheme based on mobile edge computing[J]. Journal of Electronics &Information Technology, 2018, 40(11): 2736–2743. doi: 10.11999/JEIT180027 王汝言, 聶軒, 吳大鵬, 等. 社會(huì)屬性感知的邊緣計(jì)算任務(wù)調(diào)度策略[J]. 電子與信息學(xué)報(bào), 2020, 42(1): 271–278. doi: 10.11999/JEIT190301WANG Ruyan, NIE Xuan, WU Dapeng, et al. Social attribute aware task scheduling strategy in edge computing[J]. Journal of Electronics &Information Technology, 2020, 42(1): 271–278. doi: 10.11999/JEIT190301 WANG Chang, DONG Chongwu, QIN Jinghui, et al. Energy-efficient offloading policy for resource allocation in distributed mobile edge computing[C]. 2018 IEEE Symposium on Computers and Communications, Natal, Brazil, 2018: 366–372. doi: 10.1109/ISCC.2018.8538612. HUU T T and THAM C K. An auction-based resource allocation model for green cloud computing[C]. 2013 IEEE International Conference on Cloud Engineering, Redwood City, USA, 2013: 269–278. doi: 10.1109/IC2E.2013.21. JIN Along, SONG Wei, and ZHUANG Weihua. Auction-based resource allocation for sharing cloudlets in mobile cloud computing[J]. IEEE Transactions on Emerging Topics in Computing, 2018, 6(1): 45–57. doi: 10.1109/TETC.2015.2487865 ZHOU Chongyu, THAM C K, and MOTANI M. Online auction for truthful stochastic offloading in mobile cloud computing[C]. 2017 IEEE Global Communications Conference, Singapore, 2017: 1–6. doi: 10.1109/GLOCOM.2017.8254630. LYU Xinchen, NI Wei, TIAN Hui, et al. Optimal schedule of mobile edge computing for internet of things using partial information[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(11): 2606–2615. doi: 10.1109/JSAC.2017.2760186 CAO Bin, XIA Shichao, HAN Jiawei, et al. A distributed game methodology for crowdsensing in uncertain wireless scenario[J]. IEEE Transactions on Mobile Computing, 2020, 19(1): 15–28. doi: 10.1109/TMC.2019.2892953 MAO Yuyi, ZHANG Jun, and LETAIEF K B. Dynamic computation offloading for mobile-edge computing with energy harvesting devices[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(12): 3590–3605. doi: 10.1109/JSAC.2016.2611964 張海波, 李虎, 陳善學(xué), 等. 超密集網(wǎng)絡(luò)中基于移動(dòng)邊緣計(jì)算的任務(wù)卸載和資源優(yōu)化[J]. 電子與信息學(xué)報(bào), 2019, 41(5): 1194–1201. doi: 10.11999/JEIT180592ZHANG Haibo, LI Hu, CHEN Shanxue, et al. Computing offloading and resource optimization in ultra-dense networks with mobile edge computation[J]. Journal of Electronics &Information Technology, 2019, 41(5): 1194–1201. doi: 10.11999/JEIT180592 CAO Bin, XIA Shichao, LI Yun, et al. An incentive-based workload assignment with power allocation in ad hoc cloud[C]. 2017 IEEE International Conference on Communications, Paris, France, 2017: 1–6. doi: 10.1109/ICC.2017.7997026. NEELY M. Stochastic Network Optimization with Application to Communication and Queueing Systems[M]. Morgan & Claypool, 2010: 25–38. BOYD S and VANDENBERGHE L. Convex Optimization[M]. Cambridge, UK: Cambridge University Press, 2004: 326–327. doi: 10.1017/CBO9780511804441. WANG Beibei, HAN Zhu, and LIU K L R. Distributed relay selection and power control for multiuser cooperative communication networks using stackelberg game[J]. IEEE Transactions on Mobile Computing, 2009, 8(7): 975–990. doi: 10.1109/TMC.2008.153 -