一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于邊緣增強(qiáng)引導(dǎo)濾波的光場(chǎng)全聚焦圖像融合

武迎春 王玉梅 王安紅 趙賢凌

武迎春, 王玉梅, 王安紅, 趙賢凌. 基于邊緣增強(qiáng)引導(dǎo)濾波的光場(chǎng)全聚焦圖像融合[J]. 電子與信息學(xué)報(bào), 2020, 42(9): 2293-2301. doi: 10.11999/JEIT190723
引用本文: 武迎春, 王玉梅, 王安紅, 趙賢凌. 基于邊緣增強(qiáng)引導(dǎo)濾波的光場(chǎng)全聚焦圖像融合[J]. 電子與信息學(xué)報(bào), 2020, 42(9): 2293-2301. doi: 10.11999/JEIT190723
Yingchun WU, Yumei WANG, Anhong WANG, Xianling ZHAO. Light Field All-in-focus Image Fusion Based on Edge Enhanced Guided Filtering[J]. Journal of Electronics & Information Technology, 2020, 42(9): 2293-2301. doi: 10.11999/JEIT190723
Citation: Yingchun WU, Yumei WANG, Anhong WANG, Xianling ZHAO. Light Field All-in-focus Image Fusion Based on Edge Enhanced Guided Filtering[J]. Journal of Electronics & Information Technology, 2020, 42(9): 2293-2301. doi: 10.11999/JEIT190723

基于邊緣增強(qiáng)引導(dǎo)濾波的光場(chǎng)全聚焦圖像融合

doi: 10.11999/JEIT190723
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(61601318),山西省青年科技研究基金(201601D021078),山西省重點(diǎn)學(xué)科建設(shè)經(jīng)費(fèi),山西省互聯(lián)網(wǎng)+3D打印協(xié)同創(chuàng)新中心,山西省1331工程重點(diǎn)創(chuàng)新團(tuán)隊(duì),山西省科技創(chuàng)新團(tuán)隊(duì)(201705D131025),太原科技大學(xué)博士啟動(dòng)基金(20132023),國(guó)家留學(xué)基金
詳細(xì)信息
    作者簡(jiǎn)介:

    武迎春:女,1984年生,副教授,研究方向?yàn)楣鈭?chǎng)信息獲取與處理、光學(xué)3維傳感

    王玉梅:女,1995年生,碩士生,研究方向?yàn)楣庑畔@取與處理

    王安紅:女,1972年生,教授,研究方向?yàn)橐曨l通信、圖像識(shí)別、3D數(shù)據(jù)分析理解

    趙賢凌:女,1978年生,講師,研究方向?yàn)楣鈭?chǎng)信息獲取與處理、光學(xué)3維傳感

    通訊作者:

    王玉梅 1954569241@qq.com

  • 中圖分類號(hào): TN911.73

Light Field All-in-focus Image Fusion Based on Edge Enhanced Guided Filtering

Funds: The National Natural Science Foundation of China (61601318), The Shanxi Science Foundation of Applied Foundational Research (201601D021078), The Fund of Shanxi Key Subjects Construction, The Collaborative Innovation Center of Internet+3D Printing in Shanxi Province, The Key Innovation Team of Shanxi 1331 Project, The Scientific and Technological Innovation Team of Shanxi Province (201705D131025), The Youth Foundation of Taiyuan University of Science and Technology (20132023), The Foundation of China Scholarship Council
  • 摘要: 受光場(chǎng)相機(jī)微透鏡幾何標(biāo)定精度的影響,4D光場(chǎng)在角度方向上的解碼誤差會(huì)造成積分后的重聚焦圖像邊緣信息損失,從而降低全聚焦圖像融合的精度。該文提出一種基于邊緣增強(qiáng)引導(dǎo)濾波的光場(chǎng)全聚焦圖像融合算法,通過(guò)對(duì)光場(chǎng)數(shù)字重聚焦得到的多幅重聚焦圖像進(jìn)行多尺度分解、特征層決策圖引導(dǎo)濾波優(yōu)化來(lái)獲得最終全聚焦圖像。與傳統(tǒng)融合算法相比,該方法對(duì)4D光場(chǎng)標(biāo)定誤差帶來(lái)的邊緣信息損失進(jìn)行了補(bǔ)償,在重聚焦圖像多尺度分解過(guò)程中增加了邊緣層的提取來(lái)實(shí)現(xiàn)圖像高頻信息增強(qiáng),并建立多尺度圖像評(píng)價(jià)模型實(shí)現(xiàn)邊緣層引導(dǎo)濾波參數(shù)優(yōu)化,可獲得更高質(zhì)量的光場(chǎng)全聚焦圖像。實(shí)驗(yàn)結(jié)果表明,在不明顯降低融合圖像與原始圖像相似性的前提下,該方法可有效提高全聚焦圖像的邊緣強(qiáng)度和感知清晰度。
  • 圖  1  光場(chǎng)數(shù)字重聚焦幾何模型

    圖  2  2D光場(chǎng)原圖的解碼及積分

    圖  3  邊緣增強(qiáng)引導(dǎo)濾波算法流程

    圖  4  邊緣增強(qiáng)引導(dǎo)濾波的參數(shù)優(yōu)化

    圖  5  光場(chǎng)原圖及重聚焦圖像

    圖  6  特征層分解

    圖  7  初步?jīng)Q策圖的獲取

    圖  8  初步融合決策圖的優(yōu)化

    圖  9  光場(chǎng)全聚焦圖像融合

    圖  10  Cup圖像融合實(shí)驗(yàn)結(jié)果對(duì)比

    表  1  Flower圖像不同融合算法性能評(píng)價(jià)指標(biāo)比較

    FlowerIEEIFMIPSI
    PCA7.702734.89080.69030.1806
    WT7.717839.47880.63430.1973
    Laplace7.696539.35160.73170.1867
    BF7.692939.01810.75210.1873
    GFF7.708138.61640.73330.1860
    G-GRW7.704738.82650.74350.1851
    DSIFT7.705439.45550.74940.1921
    本文7.709940.33530.64820.2330
    下載: 導(dǎo)出CSV

    表  2  Cup圖像不同融合算法性能評(píng)價(jià)指標(biāo)比較

    CupIEEIFMIPSI
    PCA7.636639.73680.61450.1991
    WT7.645347.26130.56090.2768
    Laplace7.617246.14450.68910.2473
    BF7.619145.97570.69760.2478
    GFF7.636545.64230.69160.2400
    G-GRW7.636645.72790.69760.2467
    DSIFT7.636645.81040.69840.2474
    本文7.636647.29420.63920.2857
    下載: 導(dǎo)出CSV

    表  3  Runner圖像不同融合算法性能評(píng)價(jià)指標(biāo)比較

    RunnerIEEIFMIPSI
    PCA7.458167.76720.73630.2844
    WT7.467376.19060.72860.3307
    Laplace7.466475.91680.77740.3260
    BF7.460674.42690.78340.3291
    GFF7.465374.47180.78350.3157
    G-GRW7.465474.48980.82850.3191
    DSIFT7.466474.98580.82930.3247
    本文7.472377.54820.76100.3497
    下載: 導(dǎo)出CSV
  • LIU Yu, CHEN Xun, PENG Hu, et al. Multi-focus image fusion with a deep convolutional neural network[J]. Information Fusion, 2017, 36: 191–207. doi: 10.1016/j.inffus.2016.12.001
    WU Gaochang, MASIA B, JARABO A, et al. Light field image processing: An overview[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(7): 926–954. doi: 10.1109/JSTSP.2017.2747126
    GOSHTASBY A A and NIKOLOV S. Image fusion: Advances in the state of the art[J]. Information Fusion, 2007, 8(2): 114–118. doi: 10.1016/j.inffus.2006.04.001
    劉帆, 裴曉鵬, 張靜, 等. 基于優(yōu)化字典學(xué)習(xí)的遙感圖像融合方法[J]. 電子與信息學(xué)報(bào), 2018, 40(12): 2804–2811. doi: 10.11999/JEIT180263

    LIU Fan, PEI Xiaopeng, ZHANG Jing, et al. Remote sensing image fusion based on optimized dictionary learning[J]. Journal of Electronics &Information Technology, 2018, 40(12): 2804–2811. doi: 10.11999/JEIT180263
    謝穎賢, 武迎春, 王玉梅, 等. 基于小波域清晰度評(píng)價(jià)的光場(chǎng)全聚焦圖像融合[J]. 北京航空航天大學(xué)學(xué)報(bào), 2019, 45(9): 1848–1854. doi: 10.13700/j.bh.1001-5965.2018.0739

    XIE Yingxian, WU Yingchun, WANG Yumei, et al. Light field all-in-focus image fusion based on wavelet domain sharpness evaluation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(9): 1848–1854. doi: 10.13700/j.bh.1001-5965.2018.0739
    肖斌, 唐翰, 徐韻秋, 等. 基于Hess矩陣的多聚焦圖像融合方法[J]. 電子與信息學(xué)報(bào), 2018, 40(2): 255–263. doi: 10.11999/JEIT170497

    XIAO Bin, TANG Han, XU Yunqiu, et al. Multi-focus image fusion based on Hess matrix[J]. Journal of Electronics &Information Technology, 2018, 40(2): 255–263. doi: 10.11999/JEIT170497
    ZHANG Yu, BAI Xiangzhi, and WANG Tao. Boundary finding based multi-focus image fusion through multi-scale morphological focus-measure[J]. Information Fusion, 2017, 35: 81–101. doi: 10.1016/j.inffus.2016.09.006
    SUN Jianguo, HAN Qilong, KOU Liang, et al. Multi-focus image fusion algorithm based on Laplacian pyramids[J]. Journal of the Optical Society of America A, 2018, 35(3): 480–490. doi: 10.1364/JOSAA.35.000480
    WAN Tao, ZHU Chenchen, and QIN Zengchang. Multifocus image fusion based on robust principal component analysis[J]. Pattern Recognition Letters, 2013, 34(9): 1001–1008. doi: 10.1016/j.patrec.2013.03.003
    LIU Yu, LIU Shuping, and WANG Zengfu. Multi-focus image fusion with dense SIFT[J]. Information Fusion, 2015, 23: 139–155. doi: 10.1016/j.inffus.2014.05.004
    LI Shutao, KANG Xudong, and HU Jianwen. Image fusion with guided filtering[J]. IEEE Transactions on Image Processing, 2013, 22(7): 2864–2875. doi: 10.1109/TIP.2013.2244222
    MA Jinlei, ZHOU Zhiqiang, WANG Bo, et al. Multi-focus image fusion based on multi-scale focus measures and generalized random walk[C]. The 36th Chinese Control Conference, Dalian, China, 2017: 5464–5468. doi: 10.23919/ChiCC.2017.8028223.
    NG R, LEVOY M, BREDIF M, et al. Light field photography with a hand-held plenoptic camera[R]. Stanford Tech Report CTSR 2005-02, 2005.
    SOTAK JR G E and BOYER K L. The laplacian-of-gaussian kernel: A formal analysis and design procedure for fast, accurate convolution and full-frame output[J]. Computer Vision, Graphics, and Image Processing, 1989, 48(2): 147–189. doi: 10.1016/s0734-189x(89)80036-2
    HE Kaiming, SUN Jian, and TANG Xiaoou. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1397–1409. doi: 10.1109/TPAMI.2012.213
    YOON Y, JEON H G, YOO D, et al. Light-field image super-resolution using convolutional neural network[J]. IEEE Signal Processing Letters, 2017, 24(6): 848–852. doi: 10.1109/LSP.2017.2669333
    SCHMIDT M, LE ROUX N, and BACH F. Minimizing finite sums with the stochastic average gradient[J]. Mathematical Programming, 2017, 162(1/2): 83–112. doi: 10.1007/s10107-016-1030-6
    LIU Zheng, BLASCH E, XUE Zhiyun, et al. Objective assessment of multiresolution image fusion algorithms for context enhancement in night vision: A comparative study[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(1): 94–109. doi: 10.1109/tpami.2011.109
    JUNEJA M and SANDHU P S. Performance evaluation of edge detection techniques for images in spatial domain[J]. International Journal of Computer Theory and Engineering, 2009, 1(5): 614–621. doi: 10.7763/IJCTE.2009.V1.100
    HAGHIGHAT M and RAZIAN M A. Fast-FMI: Non-reference image fusion metric[C]. The 8th IEEE International Conference on Application of Information and Communication Technologies, Astana, Kazakhstan, 2014: 1–3. doi: 10.1109/ICAICT.2014.7036000.
    FEICHTENHOFER C, FASSOLD H, and SCHALLAUER P. A perceptual image sharpness metric based on local edge gradient analysis[J]. IEEE Signal Processing Letters, 2013, 20(4): 379–382. doi: 10.1109/LSP.2013.2248711
  • 加載中
圖(10) / 表(3)
計(jì)量
  • 文章訪問(wèn)數(shù):  1665
  • HTML全文瀏覽量:  616
  • PDF下載量:  81
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-09-17
  • 修回日期:  2020-07-13
  • 網(wǎng)絡(luò)出版日期:  2020-07-22
  • 刊出日期:  2020-09-27

目錄

    /

    返回文章
    返回