基于干擾信號帶外分量卷積反演的鄰道干擾抑制
doi: 10.11999/JEIT190704
-
1.
電子科技大學(xué)通信抗干擾技術(shù)國家級重點(diǎn)實(shí)驗(yàn)室 成都 611731
-
2.
陸軍工程大學(xué)石家莊校區(qū)電子與光學(xué)工程系 石家莊 050003
Adjacent Channel Interference Suppression Based on Deconvolution of Interference Signal’s Out-of-band Component
-
1.
National key Laboratory of Science and Technology on Communications, University of Electronic Science and Technology of China, Chengdu 611731, China
-
2.
Department of Electronic and Optical Engineering, Shijiazhuang Campus of Army Engineering University, Shijiazhuang 050003, China
-
摘要: 鄰道干擾(ACI)抑制中需要獲取干擾信號非線性特征進(jìn)行信號重建與抵消,因此接收機(jī)需使用高速率寬帶模數(shù)轉(zhuǎn)換器(ADC)采集干擾信號,這將大幅增加接收機(jī)成本。針對上述問題,該文提出一種采用干擾信號帶外分量卷積反演的鄰道干擾抑制方法,利用接收的干擾信號帶外非線性分量,計(jì)算并消除相鄰幀之間的影響,由窄帶部分卷積信號幀構(gòu)造出線性卷積信號幀,然后用正則化最小二乘方法恢復(fù)原始非線性寬帶干擾信號,從而降低ADC采樣率。仿真驗(yàn)證結(jié)果表明當(dāng)采樣率僅為傳統(tǒng)方案1/3,所提方法帶來的殘余干擾不高于底噪6 dB。Abstract: In Adjacent Channel Interference (ACI) suppression, in order to obtain the nonlinear characteristics of interference signal for reconstruction and cancellation, the receiver needs to use high-sampling-rate wideband Analog-to-Digital Converter (ADC) to sample interference signal, which will greatly increase the cost of the receiver. To solve the problem, a ACI suppression method based on deconvolution of interference signal’s out-of-band component is proposed in this paper. By using the known out-of-band nonlinear component, the influence between adjacent frames is calculated and eliminated, and then the narrow band linear convolution frame is constructed from the partial convolution frame. Finally, the original wide band signal is recovered by regularized least square method, thus reducing the ADC sampling rate. The simulation results show that when the sampling rate is only 1/3 of the traditional scheme, the residual interference brought by the proposed method is not higher than the noise floor of 6 dB.
-
表 1 仿真實(shí)驗(yàn)參數(shù)設(shè)置
項(xiàng)目指標(biāo) 參數(shù)值 信號幀長 2.56 ms 信號帶寬 25 kHz 濾波器階數(shù) 60 采樣頻率 125 kHz 阻帶頻率1/通帶頻率1 20/30 kHz 通帶頻率2/阻帶頻率2 50/60 kHz 阻帶衰減 50 dB 下載: 導(dǎo)出CSV
表 2 仿真系統(tǒng)參數(shù)設(shè)置
項(xiàng)目指標(biāo) 參數(shù)值 信號帶寬 25 kHz 信道帶寬 50 kHz 發(fā)射功率 18 dBm 干擾信號SNR 70~110 dB 鄰道干擾INR 40~80 dB 下載: 導(dǎo)出CSV
-
ZHOU Ping, LU Yinghua, TAO Yong, et al. Simulation analysis on co-site interference of vehicular digital communication system based on IM prediction method by BER[J]. The Journal of China Universities of Posts and Telecommunications, 2016, 23(1): 31–41. doi: 10.1016/S1005-8885(16)60005-5 HAN Ting, HAN Bingjun, ZHANG Lin, et al. Coexistence study for wifi and zigbee under smart home scenarios[C]. IEEE International Conference on Network Infrastructure and Digital Content, Beijing, China, 2012: 669-674. doi: 10.1109/ICNIDC.2012.6418840. IEEE. IEEE 802.11-2007 Wireless LAN medium access control (MAC) and physical layer (PHY) specifications[S]. IEEE, 2007. NIKITIN A V, DAVIDCHACK R L, and SMITH J E. Out-of-band and adjacent-channel interference reduction by analog nonlinear filters[J]. EURASIP Journal on Advances in Signal Processing, 2015, 2015(1): 12. doi: 10.1186/s13634-015-0202-5 劉建成, 全厚德, 孫慧賢, 等. 近距離無線電臺(tái)鄰道干擾的功率譜解析[J]. 電訊技術(shù), 2017, 57(3): 306–310. doi: 10.3969/j.issn.1001-893x.2017.03.010LIU Jiancheng, QUAN Houde, SUN Huixian, et al. Power spectrum resolution of adjacent channel interference for collocated wireless radios[J]. Telecommunication Engineering, 2017, 57(3): 306–310. doi: 10.3969/j.issn.1001-893x.2017.03.010 武南開, 蘇東林, 何洪濤, 等. 機(jī)載超短波電臺(tái)鄰道干擾減敏特性建模與評估[J]. 北京航空航天大學(xué)學(xué)報(bào), 2017, 43(3): 481–487. doi: 10.13700/j.bh.1001-5965.2016.0230WU Nankai, SU Donglin, HE Hongtao, et al. Adjacent channel interference modeling and assessment on reduction of airborne VHF radio sensitivity[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(3): 481–487. doi: 10.13700/j.bh.1001-5965.2016.0230 XUE Zhen, WANG Jinlong, SHI Qingjiang, et al. Time-frequency scheduling and power optimization for reliable multiple UAV communications[J]. IEEE Access, 2018, 6: 3992–4005. doi: 10.1109/ACCESS.2018.2790933 霍曉磊, 趙宏志, 劉穎, 等. 基于抵消技術(shù)的鄰道干擾抑制[J]. 系統(tǒng)工程與電子技術(shù), 2019, 41(11): 2611–2618.HUO Xiaolei, ZHAO Hongzhi, LIU Ying, et al. Adjacent channel interference suppression based on cancellation technology[J]. Systems Engineering and Electronics, 2019, 41(11): 2611–2618. ROBLIN P, QUINDROIT C, NARAHARISETTI N, et al. Concurrent linearization: The state of the art for modeling and linearization of multiband power amplifiers[J]. IEEE Microwave Magazine, 2013, 14(7): 75–91. doi: 10.1109/MMM.2013.2281297 LIU Ying, HUANG Chuang, QUAN Xin, et al. Novel linearization architecture with limited ADC dynamic range for green power amplifiers[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(12): 3902–3914. doi: 10.1109/JSAC.2016.2600415 LIU Ying, PAN Wensheng, SHAO Shihai, et al. A new digital predistortion for wideband power amplifiers with constrained feedback bandwidth[J]. IEEE Microwave and Wireless Components Letters, 2013, 23(12): 683–685. doi: 10.1109/LMWC.2013.2284786 MA Yuelin, YAMAO Y, AKAIWA Y, et al. Wideband digital predistortion using spectral extrapolation of band-limited feedback signal[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2014, 61(7): 2088–2097. doi: 10.1109/TCSI.2013.2295897 PAN Wensheng, LIU Ying, SHAO Shihai, et al. A method to reduce sampling rate of the ADC in feedback channel for wideband digital predistortion[J]. Circuits, Systems, and Signal Processing, 2014, 33(8): 2655–2665. doi: 10.1007/s00034-014-9751-3 LIU Ying, PAN Wensheng, SHAO Shihai, et al. A general digital predistortion architecture using constrained feedback bandwidth for wideband power amplifiers[J]. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(5): 1544–1555. doi: 10.1109/TMTT.2015.2416184 YU Xin. Digital predistortion using feedback signal with incomplete spectral information[C]. 2012 Asia Pacific Microwave Conference, Kaohsiung, China, 2012: 950–952. doi: 10.1109/APMC.2012.6421788. 鄒謀炎. 反卷積和信號復(fù)原[M]. 北京: 國防工業(yè)出版社, 2001: 10-160.ZOU Mouyan. Deconvolution and Signal Recovery[M]. Beijing: National Defense Industry Press, 2001: 10-160. HANSEN P C. Analysis of discrete ill-posed problems by means of the L-curve[J]. SIAM Review, 1992, 34(4): 561–580. doi: 10.1137/1034115 GOLUB G H, HEATH M, and WAHBA H G. Generalized cross-validation as a method for choosing a good ridge parameter[J]. Technometrics, 1979, 21(2): 215–223. doi: 10.1080/00401706.1979.10489751 HANSEN P C. REGULARIZATION TOOLS: A matlab package for analysis and solution of discrete ill-posed problems[J]. Numerical Algorithms, 1994, 6(1): 1–35. doi: 10.1007/BF02149761 DING Lei, ZHOU G T, MORGAN D R, et al. A robust digital baseband predistorter constructed using memory polynomials[J]. IEEE Transactions on Communications, 2004, 52(1): 159–165. doi: 10.1109/TCOMM.2003.822188 -