一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

帶有特征感知的D2D內(nèi)容緩存策略

楊靜 李金科

楊靜, 李金科. 帶有特征感知的D2D內(nèi)容緩存策略[J]. 電子與信息學(xué)報(bào), 2020, 42(9): 2201-2207. doi: 10.11999/JEIT190691
引用本文: 楊靜, 李金科. 帶有特征感知的D2D內(nèi)容緩存策略[J]. 電子與信息學(xué)報(bào), 2020, 42(9): 2201-2207. doi: 10.11999/JEIT190691
Jing YANG, Jinke LI. Feature-Aware D2D Content Caching Strategy[J]. Journal of Electronics & Information Technology, 2020, 42(9): 2201-2207. doi: 10.11999/JEIT190691
Citation: Jing YANG, Jinke LI. Feature-Aware D2D Content Caching Strategy[J]. Journal of Electronics & Information Technology, 2020, 42(9): 2201-2207. doi: 10.11999/JEIT190691

帶有特征感知的D2D內(nèi)容緩存策略

doi: 10.11999/JEIT190691
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(61871062, 61771082),重慶市高校創(chuàng)新團(tuán)隊(duì)建設(shè)計(jì)劃項(xiàng)目(CXTDX201601020)
詳細(xì)信息
    作者簡(jiǎn)介:

    楊靜:女,1972年生,高級(jí)工程師,研究方向?yàn)榉涸跓o(wú)線通信網(wǎng)絡(luò)、物聯(lián)網(wǎng)技術(shù)等

    李金科:男,1995年生,碩士生,研究方向?yàn)镈2D通信

    通訊作者:

    李金科 s170131104@stu.cqupt.edu.cn

  • 中圖分類號(hào): TN919

Feature-Aware D2D Content Caching Strategy

Funds: The National Natural Science Foundation of China (61871062, 61771082), The Program for Innovation Team Building at Institutions of Higher Education in Chongqing (CXTDX201601020)
  • 摘要: 設(shè)備到設(shè)備通信(D2D)可以有效地卸載基站流量,在D2D網(wǎng)絡(luò)中不僅需要共享大眾化內(nèi)容還需要個(gè)性化內(nèi)容緩存。該文對(duì)緩存內(nèi)容選擇問題進(jìn)行了深入研究,提出一種結(jié)合特征感知的內(nèi)容社交價(jià)值預(yù)測(cè)(CSVP)方法。價(jià)值預(yù)測(cè)不僅可以降低時(shí)延也可以減少緩存替換次數(shù)降低緩存成本。首先結(jié)合用戶特征和內(nèi)容特征計(jì)算內(nèi)容當(dāng)前價(jià)值,然后通過用戶社交關(guān)系計(jì)算未來(lái)價(jià)值。微基站根據(jù)內(nèi)容的價(jià)值為用戶提供個(gè)性化內(nèi)容緩存服務(wù),宏基站則在每個(gè)微基站的緩存內(nèi)容中選擇價(jià)值較大部分的內(nèi)容。仿真結(jié)果表明,該文提出的緩存策略可以有效緩解基站流量,與其他方法相比降低時(shí)延約20%~40%。
  • 圖  1  網(wǎng)絡(luò)架構(gòu)

    圖  2  用戶間社交對(duì)價(jià)值的影響

    圖  3  不同策略下的命中率

    圖  4  不同策略下的請(qǐng)求時(shí)延

    圖  5  不同齊夫參數(shù)下的命中率

    圖  6  不同學(xué)習(xí)率下的命中率

    表  1  算法1 內(nèi)容社交價(jià)值預(yù)測(cè)

     輸入:$T,r,\alpha ,\lambda ,{\lambda _1},{\lambda _2},{\beta _1},{\beta _2},\xi $
     輸出:價(jià)值列表,觀察用戶請(qǐng)求情況
     (1)  隨機(jī)初始化參數(shù)$\widehat {{U}},\widehat {{C}},{{L}},{{W}}$
     (2)  For t=1, 2, ···, T do
     (3)   感知內(nèi)容特征及用戶特征
     (4)   For all kC do
     (5)    如果內(nèi)容是新內(nèi)容:
     (6)     初始化參數(shù):${{{A}}_k} \leftarrow {{{I}}_d}$, ${{{B}}_k} \leftarrow {0_{d*1}}$
     (7)    結(jié)束
     (8)    更新參數(shù):${\theta _{t,k}} \leftarrow {{A}}_{t,k}^{ - 1}{{{B}}_{t,k}}$,
          ${P_{t,i,k}} \leftarrow {{X}}_{t,k}^{\rm{T}}{\theta _k} + \alpha \sqrt {{{X}}_{t,k}^{\rm{T}}{{A}}_{t,k}^{ - 1}{{X}}_{t,k}^{\rm{T}}} $,
          ${{{A}}_{t,k}} \leftarrow {{{A}}_{t,k}} + {{{X}}_{t,k}}{{X}}_{t,k}^{\rm{T}}$, ${{{B}}_{t,k}} \leftarrow {{{B}}_{t,k}} + {r_t}{{{X}}_{t,k}}$
     (9)    當(dāng)式(29)的值沒有收斂時(shí):
     (10)     根據(jù)梯度更新參數(shù)
     (11)    結(jié)束
     (12)    計(jì)算未來(lái)價(jià)值
     (13)    計(jì)算總價(jià)值
     (14)   結(jié)束
     (15)  按降序輸出價(jià)值列表,觀察用戶請(qǐng)求情況
     (16) 結(jié)束
    下載: 導(dǎo)出CSV

    表  2  仿真參數(shù)設(shè)置

    參數(shù)參數(shù)值
    內(nèi)容庫(kù)數(shù)量5000
    內(nèi)容包大小20 MB
    SBS-UE延時(shí)20 ms
    BS-UE延時(shí)50 ms
    CDN-UE延時(shí)100 ms
    D2D延時(shí)10 ms
    下載: 導(dǎo)出CSV
  • Cisco. Cisco visual networking index: Global mobile data traffic forecast update, 2017–2022 white paper[EB/OL]. https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html, 2019.
    REBECCHI F, DE AMORIM M D, and CONAN V. Droid: Adapting to individual mobility pays off in mobile data offloading[C]. 2014 IFIP Networking Conference, Trondheim, Norway, 2014: 1–9. doi: 10.1109/IFIPNetworking.2014.6857087.
    FANG Chao, YAO Haipeng, WANG Zhuwei, et al. A survey of mobile information-centric networking: research issues and challenges[J]. IEEE Communications Surveys & Tutorials, 2018, 20(3): 2353–2371. doi: 10.1109/COMST.2018.2809670
    TATAR A, DE AMORIM M D, FDIDA S, et al. A survey on predicting the popularity of web content[J]. Journal of Internet Services and Applications, 2014, 5(1): 8. doi: 10.1186/s13174-014-0008-y
    CHANDRASEKARAN G, WANG N, and TAFAZOLLI R. Caching on the move: Towards D2D-based information centric networking for mobile content distribution[C]. The 40th IEEE Conference on Local Computer Networks, Clearwater Beach, USA, 2015: 312–320, doi: 10.1109/LCN.2015.7366325.
    KHAN F H and KHAN Z. Popularity-aware content caching for distributed wireless helper nodes[J]. Arabian Journal for Science and Engineering, 2017, 42(8): 3375–3389. doi: 10.1007/s13369-017-2505-3
    TAGHIZADEH M and BISWAS S. Community based cooperative content caching in social wireless networks[C]. The 14th ACM International Symposium on Mobile Ad Hoc Networking and Computing, Bangalore, India, 2013: 257–262. doi: 10.1145/2491288.2491318.
    柴蓉, 王令, 陳明龍, 等. 基于時(shí)延優(yōu)化的蜂窩D2D通信聯(lián)合用戶關(guān)聯(lián)及內(nèi)容部署算法[J]. 電子與信息學(xué)報(bào), 2019, 41(11): 2565–2570. doi: 10.11999/JEIT180408

    CHAI Rong, WANG Ling, CHEN Minglong, et al. Joint clustering and content deployment algorithm for cellular d2d communication based on delay optimization[J]. Journal of Electronics &Information Technology, 2019, 41(11): 2565–2570. doi: 10.11999/JEIT180408
    MEGIDDO N and MODHA D S. ARC: A self-tuning, low overhead replacement cache[C]. The 2nd USENIX Conference on File and Storage Technologies, San Francisco, USA, 2003: 115–130.
    MEGIDDO N and MODHA D S. Outperforming LRU with an adaptive replacement cache algorithm[J]. Computer, 2004, 37(4): 58–65. doi: 10.1109/MC.2004.1297303
    XIANG Lin, Ng D W K, GE Xiaohu, et al. Cache-aided non-orthogonal multiple access: The two-user case[J]. IEEE Journal of Selected Topics in Signal Processing, 2019, 13(3): 436–451. doi: 10.1109/JSTSP.2019.2907864
    LI Lihong, CHU Wei, LANGFORD J, et al. A contextual-bandit approach to personalized news article recommendation[C]. The 19th International Conference on World Wide Web, Raleigh, USA, 2010: 661–670. doi: 10.1145/1772690.1772758.
    ZIPF G K. Selected studies of the principle of relative frequency in language[J]. Language, 1933, 9(1): 89–92. doi: 10.4159/harvard.9780674434929
    JIANG Wei, FENG Gang, QIN Shuang, et al. Multi-agent reinforcement learning for efficient content caching in mobile D2D networks[J]. IEEE Transactions on Wireless Communications, 2019, 18(3): 1610–1622. doi: 10.1109/TWC.2019.2894403
    WALSH T J, SZITA I, DIUK C, et al. Exploring compact reinforcement-learning representations with linear regression[C]. The 25th Conference on Uncertainty in Artificial Intelligence, Montreal, Canada, 2009, 591–598.
    MA Hao, ZHOU T C, LYU M R, et al. Improving recommender systems by incorporating social contextual information[J]. ACM Transactions on Information Systems, 2011, 29(2): 1–23. doi: 10.1145/1961209.1961212
    YANG Bo, LEI Yu, LIU Jiming, et al. Social collaborative filtering by trust[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(8): 1633–1647. doi: 10.1109/TPAMI.2016.2605085
  • 加載中
圖(6) / 表(2)
計(jì)量
  • 文章訪問數(shù):  1899
  • HTML全文瀏覽量:  635
  • PDF下載量:  75
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-09-05
  • 修回日期:  2020-05-03
  • 網(wǎng)絡(luò)出版日期:  2020-05-17
  • 刊出日期:  2020-09-27

目錄

    /

    返回文章
    返回