基于量子不經(jīng)意密鑰傳輸?shù)牧孔幽涿J(rèn)證密鑰交換協(xié)議
doi: 10.11999/JEIT190679
-
1.
北京郵電大學(xué)網(wǎng)絡(luò)與交換技術(shù)國家重點(diǎn)實(shí)驗(yàn)室 北京 100876
-
2.
洛陽師范學(xué)院數(shù)學(xué)科學(xué)學(xué)院 洛陽 471934
-
3.
鵬程實(shí)驗(yàn)室量子計(jì)算研究中心 深圳 518055
-
4.
密碼科學(xué)技術(shù)國家重點(diǎn)實(shí)驗(yàn)室 北京 100878
Quantum Anonymous Authenticated Key Exchange Protocol Based on Quantum Oblivious Key Transfer
-
1.
State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China
-
2.
School of Mathematical Science, Luoyang Normal University, Luoyang 471934, China
-
3.
Center for Quantum Computing, Peng Cheng Laboratory, Shenzhen 518055, China
-
4.
State Key Laboratory of Cryptology, Beijing 100878, China
-
摘要: 鑒于量子密碼在密鑰分配方面取得的巨大成功,人們也在嘗試?yán)昧孔有再|(zhì)來設(shè)計(jì)其他各類密碼協(xié)議。匿名認(rèn)證密鑰交換就是一類尚缺乏實(shí)用化量子實(shí)現(xiàn)途徑的密碼任務(wù)。為此,該文提出一個(gè)基于量子不經(jīng)意密鑰傳輸?shù)牧孔幽涿J(rèn)證密鑰交換協(xié)議。它在滿足用戶匿名性和實(shí)現(xiàn)用戶與服務(wù)器雙向認(rèn)證的前提下,為雙方建立了一個(gè)安全的會(huì)話密鑰。該協(xié)議的安全性基于量子力學(xué)原理,可以對抗量子計(jì)算的攻擊。此外,該協(xié)議中服務(wù)器的攻擊行為要么無法奏效,要么能夠與外部竊聽區(qū)分開(從而被認(rèn)定為欺騙),因此服務(wù)器通常不敢冒著名譽(yù)受損的風(fēng)險(xiǎn)來實(shí)施欺騙。
-
關(guān)鍵詞:
- 量子保密查詢 /
- 不經(jīng)意傳輸 /
- 量子匿名認(rèn)證密鑰交換
Abstract: In view of the great success of quantum cryptography in key distribution, people also try to utilize the quantum mechanics to construct many other cryptographic protocols. Anonymous authenticated key exchange is exactly one kind of cryptographic tasks whose practical quantum solution is still awaited so far. To solve this problem, a quantum anonymous authenticated exchange protocol is proposed based on a quantum oblivious key transfer scheme. It not only realizes user anonymity and mutual authentication of the user and server, but also establishes a secure session key between the two parties. Besides, the attacks of the server either fail or can be discriminated with outside eavesdropping (the server is thus caught as a cheater), so the server generally will not cheat at the risk of gaining a bad reputation. -
VIET D Q, YAMAMURA A, and TANAKA H. Anonymous password-based authenticated key exchange[C]. The 6th International Conference on Cryptology in India, Bangalore, India, 2005: 244–257. doi: 10.1007/11596219_20. HU Xuexian, ZHANG Jiang, ZHANG Zhenfeng, et al. Universally composable anonymous password authenticated key exchange[J]. Science China Information Sciences, 2017, 60(5): 52107. doi: 10.1007/s11432-016-5522-z LI Xiong, IBRAHIM M H, KUMARI S, et al. Anonymous mutual authentication and key agreement scheme for wearable sensors in wireless body area networks[J]. Computer Networks, 2017, 129: 429–443. doi: 10.1016/j.comnet.2017.03.013 SHOR P W. Algorithms for quantum computation: Discrete logarithms and factoring[C]. The 35th Annual Symposium on Foundations of Computer Science, Santa Fe, USA, 1994: 124–134. doi: 10.1109/SFCS.1994.365700. GROVER L K. A fast quantum mechanical algorithm for database search[C]. The 28th Annual ACM Symposium on Theory of Computing, Philadelphia, USA, 1996: 212–219. doi: 10.1145/237814.237866. GISIN N, RIBORDY G, TITTEL W, et al. Quantum cryptography[J]. Reviews of Modern Physics, 2002, 74(1): 145–195. doi: 10.1103/RevModPhys.74.145 EVEN S, GOLDREICH O, and LEMPEL A. A randomized protocol for signing contracts[J]. Communications of the ACM, 1985, 28(6): 637–647. doi: 10.1145/3812.3818 BRASSARD G, CREPEAU C, and ROBERT J M. All-or-Nothing Disclosure of Secrets[M]. Berlin, Heidelberg: Springer, 1987: 234–238. doi: 10.1007/3-540-47721-7_17. GAO Fei, QIN Sujuan, HUANG Wei, et al. Quantum private query: A new kind of practical quantum cryptographic protocol[J]. Science China Physics, Mechanics & Astronomy, 2019, 62(7): 70301. doi: 10.1007/s11433-018-9324-6 JAKOBI M, SIMON C, GISIN N, et al. Practical private database queries based on a quantum- key-distribution protocol[J]. Physical Review A, 2011, 83(2): 022301. doi: 10.1103/PhysRevA.83.022301 SCARANI V, ACíN A, RIBORDY G, et al. Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations[J]. Physical Review Letters, 2004, 92(5): 057901. doi: 10.1103/physrevlett.92.057901 GAO Fei, LIU Bin, WEN Qiaoyan, et al. Flexible quantum private queries based on quantum key distribution[J]. Optics Express, 2012, 20(16): 17411–17420. doi: 10.1364/OE.20.017411 ZHANG Jiali, GUO Fenzhuo, GAO Fei, et al. Private database queries based on counterfactual quantum key distribution[J]. Physical Review A, 2013, 88(2): 022334. doi: 10.1103/physreva.88.022334 SASAKI T, YAMAMOTO Y, and KOASHI M. Practical quantum key distribution protocol without monitoring signal disturbance[J]. Nature, 2014, 509(7501): 475–478. doi: 10.1038/nature13303 LIU Bin, GAO Fei, HUANG Wei, et al. QKD-based quantum private query without a failure probability[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(10): 100301. doi: 10.1007/s11433-015-5714-3 WEI Chunyan, GAO Fei, WEN Qiaoyan, et al. Practical quantum private query of blocks based on unbalanced-state Bennett-Brassard-1984 quantum-key -distribution protocol[J]. Scientific Reports, 2014, 4(1): 7537. doi: 10.1038/srep07537 PANDURANGA RAO M V and JAKOBI M. Towards communication-efficient quantum oblivious key distribution[J]. Physical Review A, 2013, 87(1): 012331. doi: 10.1103/PhysRevA.87.012331 GAO Fei, LIU Bin, HUANG Wei, et al. Postprocessing of the oblivious key in quantum private query[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(3): 98–108. doi: 10.1109/jstqe.2014.2358192 WEI Chunyan, WANG Tianyin, and GAO Fei. Practical quantum private query with better performance in resisting joint-measurement attack[J]. Physical Review A, 2016, 93(4): 042318. doi: 10.1103/PhysRevA.93.042318 YU Fang, QIU Daowen, SITU Haozhen, et al. Enhancing user privacy in SARG04-based private database query protocols[J]. Quantum Information Processing, 2015, 14(11): 4201–4210. doi: 10.1007/s11128-015-1091-0 WEI Chunyan, CAI Xiaoqiu, LIU Bin, et al. A generic construction of quantum-oblivious-key-transfer-based private query with ideal database security and zero failure[J]. IEEE Transactions on Computers, 2018, 67(1): 2–8. doi: 10.1109/TC.2017.2721404 CHAN P, LUCIO-MARTINEZ I, MO Xiaofan, et al. Performing private database queries in a real-world environment using a quantum protocol[J]. Scientific Reports, 2014, 4(1): 5233. doi: 10.1038/srep05233 YAO A C C. How to generate and exchange secrets[C]. The 27th Annual Symposium on Foundations of Computer Science, Toronto, Canada, 1986: 162–167. doi: 10.1109/SFCS.1986.25. KILIAN J. Founding crytpography on oblivious transfer[C]. The 20th Annual ACM Symposium on Theory of Computing, Chicago, USA, 1988: 20–31. doi: 10.1145/62212.62215. NIELSEN J B, NORDHOLT P S, ORLANDI C, et al. A new approach to practical active-secure two-party computation[C]. The 32nd Annual Cryptology Conference, Santa Barbara, USA, 2012: 681–700. doi: 10.1007/978-3-642-32009-5_40. LO H K. Insecurity of quantum secure computations[J]. Physical Review A, 1998, 56(2): 1154–1162. doi: 10.1103/PhysRevA.56.1154 BENNETT C H and BRASSARD G. Quantum cryptography: Public key distribution and coin tossing[J]. Theoretical Computer Science, 2014, 560: 7–11. doi: 10.1016/j.tcs.2014.05.025 -