基于相干態(tài)光場的連續(xù)變量測量設(shè)備無關(guān)Cluster態(tài)量子通信
doi: 10.11999/JEIT190661
-
密碼科學(xué)技術(shù)國家重點實驗室 北京 100878
基金項目: 國家自然科學(xué)基金(61602045, 61602046),國家重點研發(fā)計劃(2016YFA0302600, 2018YFA0306404)
Continuous Variable Measurement-Device-Independent Cluster State Quantum Communication Based on Coherent State
-
State Key Laboratory of Cryptology, Beijing 100878, China
Funds: The National Natural Science Foundation of China (61602045, 61602046), The National Key Research and Development Program of China (2016YFA0302600, 2018YFA0306404)
-
摘要: 由于量子通信協(xié)議理論上可以發(fā)現(xiàn)任何竊聽者的攻擊行為,因此其天然具有抗量子計算機攻擊的能力。高斯相干態(tài)光場相較于糾纏態(tài)光場更容易制備和實現(xiàn),利用其實現(xiàn)量子通信網(wǎng)絡(luò)更具經(jīng)濟價值和實用價值。該文提出一種利用連續(xù)變量(CV)相干態(tài)光場就可以實現(xiàn)的測量設(shè)備無關(guān)(MDI)Cluster態(tài)量子通信網(wǎng)絡(luò)協(xié)議。在此網(wǎng)絡(luò)上可以方便地執(zhí)行量子秘密共享(QSS)協(xié)議和量子會議(QC)協(xié)議。該文提出了線型Cluster態(tài)實現(xiàn)任意部分用戶間QSS協(xié)議、星型Cluster態(tài)四用戶QSS協(xié)議和QC協(xié)議,并利用糾纏模型分析了選用對稱和非對稱網(wǎng)絡(luò)結(jié)構(gòu)時,每種協(xié)議密鑰率和傳輸距離之間的變化關(guān)系。結(jié)論為在量子網(wǎng)絡(luò)中利用相干態(tài)實現(xiàn)QSS和QC協(xié)議提供了理論依據(jù)。
-
關(guān)鍵詞:
- 量子通信 /
- 相干態(tài) /
- 連續(xù)變量 /
- 測量設(shè)備無關(guān) /
- Cluster態(tài)
Abstract: Even attacks by quantum computer can be theoretically discovered if utilizing quantum communication protocols. Compared with entangled states, the Continuous Variable (CV) Gaussian coherent state is easier to be prepared. The schemes of quantum communication network based on coherent state will be more economical and practical. A Measurement-Device-Independent (MDI) Cluster state quantum communication network scheme by using coherent state is proposed. Quantum Secret Sharing (QSS) and Quantum Conference (QC) protocols can be implemented in this network. A linear Cluster state scheme is poposed to implement t-out-of-n QSS protocol, a star Cluster state scheme to implement four-user QSS protocol and QC protocol. The entanglement-based CV MDI scheme is used to analyze the relationship between the key rates and transmission distance for each symmetric and asymmetric protocol. The presented schemes provide a concrete reference for establishing CV MDI quantum QSS and QC protocol in quantum networks by using coherent state. -
BRAUNSTEIN S L and VAN LOOCK P. Quantum information with continuous variables[J]. Reviews of Modern Physics, 2005, 77(2): 513–577. doi: 10.1103/RevModPhys.77.513 ZHANG Jing and BRAUNSTEIN S L. Continuous-variable Gaussian analog of cluster states[J]. Physical Review A, 2006, 73(3): 032318. doi: 10.1103/PhysRevA.73.032318 YOKOYAMA S, UKAI R, ARMSTRONG S C, et al. Ultra-large-scale continuous-variable cluster states multiplexed in the time domain[J]. Nature Photonics, 2013, 7(12): 982–986. doi: 10.1038/nphoton.2013.287 BRIEGEL H J and RAUSSENDORF R. Persistent entanglement in arrays of interacting particles[J]. Physical Review Letters, 2001, 86(5): 910–913. doi: 10.1103/PhysRevLett.86.910 WANG Yu and SU Qi. Implementing classical Hadamard transform algorithm by continuous variable cluster state[J]. Chinese Physics Letters, 2017, 34(7): 070302. doi: 10.1088/0256-307X/34/7/070302 CLEVE R, GOTTESMAN D, and LO H K. How to share a quantum secret[J]. Physical Review Letters, 1999, 83(3): 648–651. doi: 10.1103/PhysRevLett.83.648 ZHAO Yi, FUNG C H F, Qi Bing, et al. Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems[J]. Physical Review A, 2008, 78(4): 042333. doi: 10.1103/PhysRevA.78.042333 YIN Hualei, CHEN Tengyun, YU Zongwen, et al. Measurement-device-independent quantum key distribution over a 404 km optical fiber[J]. Physical Review Letters, 2016, 117(19): 190501. doi: 10.1103/PhysRevLett.117.190501 LUCAMARINI M, YUAN Z L, DYNES J F, et al. Overcoming the rate-distance limit of quantum key distribution without quantum repeaters[J]. Nature, 2018, 557(7705): 400–403. doi: 10.1038/s41586-018-0066-6 WANG Shuang, HE Deyong, YIN Zhenqiang, et al. Beating the fundamental rate-distance limit in a proof-of-principle quantum key distribution system[J]. Physical Review X, 2019, 9(2): 021046. doi: 10.1103/PhysRevX.9.021046 WU Yadong, ZHOU Jian, GONG Xinbao, et al. Continuous-variable measurement-device-independent multipartite quantum communication[J]. Physical Review A, 2016, 93(2): 022325. doi: 10.1103/PhysRevA.93.022325 OTTAVIANI C, LUPO C, LAURENZA R, et al. High-rate secure quantum conferencing[J]. ArXiv: 1709.06988, 2017. WANG Yu, TIAN Caixing, SU Qi, et al. Measurement-device-independent quantum secret sharing and quantum conference based on Gaussian cluster state[J]. Science China Information Sciences, 2019, 62(7): 72501. doi: 10.1007/s11432-018-9705-x MENICUCCI N C, VAN LOOCK P, GU M, et al. Universal quantum computation with continuous-variable cluster states[J]. Physical Review Letters, 2006, 97(11): 110501. doi: 10.1103/PhysRevLett.97.110501 YUKAWA M, UKAI R, VAN LOOCK P, et al. Experimental generation of four-mode continuous-variable cluster states[J]. Physical Review A, 2008, 78(1): 012301. doi: 10.1103/PhysRevA.78.012301 BEIMEL A. Secret-sharing schemes: A survey[C]. The 3rd International Conference on Coding and Cryptology (IWCC’11), Qingdao, China, 2011: 11–46. ADESSO G and ILLUMINATI F. Entanglement in continuous-variable systems: Recent advances and current perspectives[J]. Journal of Physics A: Mathematical and Theoretical, 2007, 40(28): 7821–7880. doi: 10.1088/1751-8113/40/28/S01 -