融合區(qū)塊鏈與霧計算系統(tǒng)中基于網(wǎng)絡(luò)時延和資源管理的優(yōu)化任務(wù)卸載方案
doi: 10.11999/JEIT190654
-
1.
重慶郵電大學(xué)通信與信息工程學(xué)院 重慶 400065
-
2.
重慶郵電大學(xué)移動通信技術(shù)重點(diǎn)實(shí)驗(yàn)室 重慶 400065
-
3.
重慶工程職業(yè)技術(shù)學(xué)院大數(shù)據(jù)與物聯(lián)網(wǎng)學(xué)院 重慶 402260
Optimal Task Offloading Scheme Based on Network Delay and Resource Management in Joint Blockchain and Fog Computing System
-
1.
Institute of Telecommunication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
-
2.
Key Laboratory of Mobile Communication Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
-
3.
Department of Big Data and Internet of Things, Chongqing Vocational Institute of Engineering, Chongqing 402260, China
-
摘要: 針對如何基于有限的系統(tǒng)剩余資源進(jìn)行任務(wù)優(yōu)化卸載以增加移動終端的數(shù)字貨幣收益問題,該文在融合區(qū)塊鏈與霧計算系統(tǒng)中提出一種基于節(jié)點(diǎn)剩余資源、網(wǎng)絡(luò)時延的任務(wù)卸載方案。為了實(shí)現(xiàn)任務(wù)的優(yōu)化卸載,首先基于任務(wù)量對移動終端的預(yù)期收益進(jìn)行了分析,其次基于網(wǎng)絡(luò)節(jié)點(diǎn)剩余計算資源、存儲資源、功率資源、網(wǎng)絡(luò)時延聯(lián)合分析了移動終端的支出。此后以最大化移動終端的數(shù)字貨幣收益為優(yōu)化目標(biāo)建立了數(shù)學(xué)優(yōu)化模型,并利用模擬退火(SA)算法對優(yōu)化模型進(jìn)行求解。仿真結(jié)果證明上述方案的有效性。
-
關(guān)鍵詞:
- 區(qū)塊鏈 /
- 霧計算 /
- 網(wǎng)絡(luò)時延 /
- 資源管理
Abstract: To solve the problem of increasing the digital currency of mobile terminals based on limited residual resources of the system, a task offloading scheme is proposed based on node residual resources and network delay in the joint blockchain and fog computing system. In order to offload the task in an optimal way, the expected revenue of mobile terminals is firstly analyzed based on the amount of tasks. Secondly, based on the remaining computing resources, storage resources, power resources and network delays, the expenditure of mobile terminal is analyzed. Then, a mathematical optimization model is established to maximize the digital currency income of the mobile terminal. The Simulated Annealing (SA) algorithm is employed to deal with the suboptimal model, respectively. Simulation results demonstrate the effectiveness of the proposed scheme.-
Key words:
- Blockchain /
- Fog computing /
- Network delay /
- Resource management
-
表 1 求解優(yōu)化模型的模擬退火算法流程
輸入:${Q_{\rm{n}}}$, $\varphi $, ${T_{\max }}$, ${T_{\min }}$, $L$, $\nu $; 輸出:優(yōu)化解$\pi^* = \{ \alpha^*,\beta^*\}$; (1) 初始化${Q_{\rm{n}}}$, 最高溫度${T_{\max }}$和最低溫度${T_{\min }}$,降溫速度$\nu $,迭代
次數(shù)$L$;(2) for m=1:L do; (3) 求解狀態(tài)${\pi _m} = \{ {\alpha _m},{\beta _m}\}$, 并計算當(dāng)前$E_{{\rm{n}}m}^{\rm{T}}$,將
${\pi _m} = \{ {\alpha _m},{\beta _m}\}$賦值給最佳解$\pi^* = \{ \alpha^*,\beta^*\}$;(4) 計算下一狀態(tài)解${\pi '} = \{ {\alpha '},{\beta '}\}$,并計算對應(yīng)的$E_{{\rm{n}}(m + 1)}^{\rm{T}}$; (5) 計算增量$\Delta E_{{\rm{n}}m}^{\rm{T}} = E_{{\rm{n}}(m + 1)}^{\rm{T}} - E_{{\rm{n}}m}^{\rm{T}}$; (6) if $\Delta E_{{\rm{n}}m}^{\rm{T}} < 0$ then; (7) 接受當(dāng)前解為最佳解,并將${\pi _m} = \{ {\alpha _m},{\beta _m}\} $賦值給最佳解
$\pi^* = \{ \alpha^*,\beta^*\}$;(8) else; (9) 以metropolis準(zhǔn)則中的概率${p_{{\rm{sol}}}}$接受${\pi _m} = \{ {\alpha _m},{\beta _m}\}$作為當(dāng)
前最佳解;(10) End if; (11) if m≠L; (12) 返回(2); (13) else; (14) end for; (15) $T(k + 1) = \nu T(k)$; (16) if $T(k + 1) > {T_{\min }}$; (17) 返回(2); (18) else; (19) end for 下載: 導(dǎo)出CSV
表 2 各種節(jié)點(diǎn)的總資源和剩余資源量及其權(quán)重的設(shè)置
節(jié)點(diǎn)類型 資源類型 總資源 剩余資源 權(quán)重 BN 存儲資源(GB) 1024 [600, 800] 0.33 計算資源(MCPS) 1000 [600, 800] 0.33 功率資源(W) 400 [280, 350] 0.34 FN 存儲資源(GB) 512 [256, 300] 0.33 計算資源(MCPS) 400 [280, 350] 0.33 功率資源(W) 40 [28, 30] 0.34 MN 存儲資源(GB) 128 [16, 32] 0.33 計算資源(MCPS) 200 [100, 160] 0.33 功率資源(W) 2 [1.2, 1.6] 0.34 下載: 導(dǎo)出CSV
-
BACCARELLI E, NARANJO P G V, SCARPINITI M, et al. Fog of everything: Energy-efficient networked computing architectures, research challenges, and a case study[J]. IEEE Access, 2017, 5: 9882–9910. doi: 10.1109/ACCESS.2017.2702013 張海波, 李虎, 陳善學(xué), 等. 超密集網(wǎng)絡(luò)中基于移動邊緣計算的任務(wù)卸載和資源優(yōu)化[J]. 電子與信息學(xué)報, 2019, 41(5): 1194–1201. doi: 10.11999/JEIT180592ZHANG Haibo, LI Hu, CHEN Shanxue, et al. Computing offloading and resource optimization in ultra-dense networks with mobile edge computation[J]. Journal of Electronics &Information Technology, 2019, 41(5): 1194–1201. doi: 10.11999/JEIT180592 CHEN Lixing, ZHOU Pan, GAO Liang, et al. Adaptive fog configuration for the industrial internet of things[J]. IEEE Transactions on Industrial Informatics, 2018, 14(10): 4656–4664. doi: 10.1109/TⅡ.2018.2846549 SHIRAZI S N, GOUGLIDIS A, FARSHAD A, et al. The extended cloud: review and analysis of mobile edge computing and fog from a security and resilience perspective[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(11): 2586–2595. doi: 10.1109/JSAC.2017.2760478 YU Yong, LI Yannan, TIAN Junfeng, et al. Blockchain-based solutions to security and privacy issues in the internet of things[J]. IEEE Wireless Communications, 2018, 25(6): 12–18. doi: 10.1109/MWC.2017.1800116 CHO H. ASIC-resistance of multi-hash proof-of-work mechanisms for blockchain consensus protocols[J]. IEEE Access, 2018, 6: 66210–66222. doi: 10.1109/ACCESS.2018.2878895 CONTI M, KUMAR E S, LAL C, et al. A survey on security and privacy issues of bitcoin[J]. IEEE Communications Surveys & Tutorials, 2018, 20(4): 3416–3452. doi: 10.1109/COMST.2018.2842460 TSCORSCH F and SCHEUERMANN B. Bitcoin and Beyond: A technical survey on decentralized digital currencies[J]. IEEE Communications Surveys & Tutorials, 2016, 18(3): 2084–2123. doi: 10.1109/COMST.2016.2535718 JANG H and LEE J. An empirical study on modeling and prediction of bitcoin prices with bayesian neural networks based on blockchain information[J]. IEEE Access, 2018, 6: 5427–5437. doi: 10.1109/ACCESS.2017.2779181 VAN DER HORST L, CHOO K K R, and LE-KHAC N A. Process memory investigation of the bitcoin clients electrum and bitcoin core[J]. IEEE Access, 2017, 5: 22385–22398. doi: 10.1109/ACCESS.2017.2759766 LIU Mengting, YU F R, TENG Yinglei, et al. Computation offloading and content caching in wireless blockchain networks with mobile edge computing[J]. IEEE Transactions on Vehicular Technology, 2018, 67(11): 11008–11021. doi: 10.1109/TVT.2018.2866365 XIONG Zehui, ZHANG Yang, NIYATO D, et al. When mobile blockchain meets edge computing[J]. IEEE Communications Magazine, 2018, 56(8): 33–39. doi: 10.1109/MCOM.2018.1701095 YAO Haipeng, MAI Tianle, WANG Jingjing, et al. Resource trading in blockchain-based industrial internet of things[J]. IEEE Transactions on Industrial Informatics, 2019, 15(6): 3602–3609. doi: 10.1109/TⅡ.2019.2902563 WANG Xiaojie, NING Zhaolong, and WANG Lei. Offloading in internet of vehicles: A fog-enabled real-time traffic management system[J]. IEEE Transactions on Industrial Informatics, 2018, 14(10): 4568–4578. doi: 10.1109/TⅡ.2018.2816590 -