基于螺旋相位變換和廣義Fibonacci混沌的光學(xué)圖像加密
doi: 10.11999/JEIT190514
-
齊齊哈爾大學(xué)計(jì)算機(jī)與控制工程學(xué)院 齊齊哈爾 161006
Optical Image Encryption Based on Spiral Phase Transform and Generalized Fibonacci Chaos
-
College of Computer and Control Engineering, Qiqihar University, Qiqihar 161006, China
-
摘要:
為了解決光學(xué)加密技術(shù)中混沌序列分布不均勻,抗選擇明文攻擊能力弱以及菲涅爾域雙隨機(jī)相位編碼系統(tǒng)對(duì)第1個(gè)衍射距離不敏感等問(wèn)題,該文基于螺旋相位變換和新型廣義Fibonacci混沌系統(tǒng),提出一種光學(xué)圖像加密算法。在菲涅爾域的雙隨機(jī)相位編碼中對(duì)明文圖像進(jìn)行相位編碼和螺旋相位變換,克服系統(tǒng)對(duì)第1塊隨機(jī)模板和衍射距離不敏感的缺陷,提高光學(xué)密鑰敏感性。添加安全圖像與明文進(jìn)行加權(quán)干涉,進(jìn)一步提高光學(xué)密鑰敏感性和密鑰維度。構(gòu)造可產(chǎn)生均勻混沌序列的廣義Fibonacci混沌系統(tǒng)生成隨機(jī)模板,解決密鑰體積過(guò)大分發(fā)傳遞困難問(wèn)題,克服Logistic混沌分布不均勻的缺點(diǎn),提高密鑰傳輸效率及密鑰敏感性。同時(shí)用明文哈希值SHA-256生成混沌初值和螺旋相位變換參數(shù),使得密鑰流隨明文自適應(yīng)變化,達(dá)到“一次一密”的效果,提高算法抵抗選擇明文攻擊能力和明文敏感性,雪崩效應(yīng)更強(qiáng)。實(shí)驗(yàn)對(duì)比表明該算法明文及密鑰敏感性高,密鑰空間大,魯棒性好,能有效抵御各種攻擊,是一種高安全性的光學(xué)圖像加密方法。
-
關(guān)鍵詞:
- 光學(xué)圖像加密 /
- 廣義Fibonacci混沌 /
- 螺旋相位變換 /
- 菲涅爾變換 /
- 一次一密
Abstract:In this paper, an optical image encryption algorithm based on spiral phase transform and new generalized fibonacci chaotic system is proposed to solve the problems of the Fresnel domain double random phase coding system is insensitive to the first diffraction distance, uneven distribution of chaotic sequences and weak resistance to choice plaintext attack. The plaintext image is encoded as phase information and spiral phase transformed to overcame the insensitivity of the first random phase template and diffraction distance of the Fresnel diffraction transform-double random phase encoding system. The sensitivity of the optical keys is improved. The weighted interference between secure image and plaintext image is added to further increase the sensitivity of the optical keys and dimension of key . A generalized Fibonacci chaotic system, which could generate uniform sequences, is constructed to generate phase templates to overcame uneven distribution of logistic chaos and improve the efficiency of key transmission and the sensitivity of the keys. The chaotic initial value and parameters of spiral phase transform are related to SHA-256. It makes the keys change with the plaintext and achieved the effect of “one encryption at a time”, and enhanced the sensitivity of the plaintext and the ability of the resistance to choice plaintext attack and avalanche effect.Experimental comparison shows that this method can effectively increase the plaintext sensitivity and key sensitivity. This method’ robustness and the key space are sufficiently secure. It is a high security optical image encryption method.
-
表 1 NPCR和UACI值對(duì)比
改變方式 比較項(xiàng) 文獻(xiàn)[14] 文獻(xiàn)[19] 本文算法 像素值加1 NPCR $1.0082 \times {10^{{\rm{ - 5}}}}$ $1.5259 \times {10^{{\rm{ - 5}}}}$ 0.9910 UACI 0 0 0.0787 兩像素點(diǎn)交換位置 NPCR $3.0025 \times {10^{{\rm{ - 5}}}}$ $3.0518 \times {10^{{\rm{ - 5}}}}$ 0.9917 UACI $1.0003 \times {10^{{\rm{ - 5}}}}$ $1.1070 \times {10^{{\rm{ - 5}}}}$ 0.0700 下載: 導(dǎo)出CSV
表 2 性能對(duì)比結(jié)果
比較項(xiàng) 文獻(xiàn)[19] 文獻(xiàn)[14] 本文算法 相鄰像素相關(guān)性 水平 0.0001 0.0334 -0.0036 垂直 0.0014 0.0248 0.0004 對(duì)角 0.0014 0.0288 -0.0082 光學(xué)密鑰敏感性 ${d_1}$ ${10^{{\rm{ - }}3}}$ ${10^{{\rm{ - 4}}}}$ ${10^{{\rm{ - 4}}}}$ ${d_2}$ ${10^{{\rm{ - 4}}}}$ ${10^{{\rm{ - 5}}}}$ ${10^{{\rm{ - 5}}}}$ $\lambda $ ${10^{{\rm{ - 11}}}}$ ${10^{{\rm{ - 9}}}}$ ${10^{{\rm{ - 12}}}}$ 抵御選擇明文攻擊 否 是 是 是否依賴于明文 否 是 是 密鑰空間 ${10^{{\rm{114}}}}$ ${10^{203}}$ ${10^{300}}$ 下載: 導(dǎo)出CSV
-
WANG Qu, XIONG Deping, ALFALOU A, et al. Optical image encryption method based on incoherent imaging and polarized light encoding[J]. Optics Communications, 2018, 415: 56–63. doi: 10.1016/j.optcom.2018.01.018 LI Xiaowei, ZHAO Min, XING Yan, et al. Designing optical 3D images encryption and reconstruction using monospectral synthetic aperture integral imaging[J]. Optics Express, 2018, 26(9): 11084–11099. doi: 10.1364/OE.26.011084 LI Chengqing, ZHANG Yun, and XIE E Y. When an attacker meets a cipher-image in 2018: A year in review[J]. arXiv: 1903.11764, 2019. REFREGIER P and JAVIDI B. Optical image encryption based on input plane and Fourier plane random encoding[J]. Optics Letters, 1995, 20(7): 767–769. doi: 10.1364/OL.20.000767 SITU G, PEDRINI G, and OSTEN W. Strategy for cryptanalysis of optical encryption in the Fresnel domain[J]. Applied Optics, 2010, 49(3): 457–462. doi: 10.1364/AO.49.000457 PENG Xiang, ZHANG Peng, WEI Hengzheng, et al. Known-plaintext attack on optical encryption based on double random phase keys[J]. Optics Letters, 2006, 31(8): 1044–1046. doi: 10.1364/OL.31.001044 彭翔, 張鵬, 位恒政, 等. 雙隨機(jī)相位加密系統(tǒng)的已知明文攻擊[J]. 物理學(xué)報(bào), 2006, 55(3): 1130–1136. doi: 10.3321/j.issn:1000-3290.2006.03.021PENG Xiang, ZHANG Peng, WEI Hengzheng, et al. Known-plaintext attack on double phase encoding encryption technique[J]. Acta Physica Sinica, 2006, 55(3): 1130–1136. doi: 10.3321/j.issn:1000-3290.2006.03.021 LIU Xiaoli, WU Jiachen, HE Wenqi, et al. Vulnerability to ciphertext-only attack of optical encryption scheme based on double random phase encoding[J]. Optics Express, 2015, 23(15): 18955–18968. doi: 10.1364/OE.23.018955 QIN Wan and PENG Xiang. Asymmetric cryptosystem based on phase-truncated Fourier transforms[J]. Optics Letters, 2010, 35(2): 118–120. doi: 10.1364/OL.35.000118 WANG Yong, QUAN Chenggen, and TAY C J. Optical color image encryption without information disclosure using phase-truncated Fresnel transform and a random amplitude mask[J]. Optics Communications, 2015, 344: 147–155. doi: 10.1016/j.optcom.2015.01.045 WANG Yong, QUAN Chenggen, and TAY C J. Improved method of attack on an asymmetric cryptosystem based on phase-truncated Fourier transform[J]. Applied Optics, 2015, 54(22): 6874–6881. doi: 10.1364/AO.54.006874 RAJPUT S K and NISHCHAL N K. Known-plaintext attack-based optical cryptosystem using phase-truncated Fresnel transform[J]. Applied Optics, 2013, 52(4): 871–878. doi: 10.1364/AO.52.000871 WANG Yong, QUAN Chenggen, and TAY C J. Asymmetric optical image encryption based on an improved amplitude-phase retrieval algorithm[J]. Optics and Lasers in Engineering, 2016, 78: 8–16. doi: 10.1016/j.optlaseng.2015.09.008 劉禹佳, 徐熙平, 徐嘉鴻, 等. 基于矢量運(yùn)算和副像相位掩模的遙感圖像加密技術(shù)[J]. 光子學(xué)報(bào), 2019, 48(2): 0210002. doi: 10.3788/gzxb20194802.0210002LIU Yujia, XU Xiping, XU Jiahong, et al. Remote sensing image encryption using vector operations and secondary image phase masks[J]. Acta Photonica Sinica, 2019, 48(2): 0210002. doi: 10.3788/gzxb20194802.0210002 常杰. 基于分?jǐn)?shù)傅里葉變換的雙圖像光學(xué)加密技術(shù)研究[D]. [碩士論文], 哈爾濱工程大學(xué), 2013.CHANG Jei. Research on double image optical encryption in the fractional Fourier-domain[D]. [Master dissertation], Harbin Engineering University, 2013. 朱薇, 楊庚, 陳蕾, 等. 基于小波變換和改進(jìn)雙隨機(jī)相位編碼的多圖像加密算法[J]. 南京郵電大學(xué)學(xué)報(bào): 自然科學(xué)版, 2014, 34(5): 87–92.ZHU Wei, YANG Geng, CHEN Lei, et al. Multiple-image encryption based on wavelet transform and improved double random phase encoding[J]. Journal of Nanjing University of Posts and Telecommunications:Natural Science, 2014, 34(5): 87–92. 孫杰. 基于多混沌系統(tǒng)的雙圖像光學(xué)加密算法[J]. 光學(xué)技術(shù), 2017, 43(3): 279–283.SUN Jie. Double optical images encryption method based on chaotic systems[J]. Optical Technique, 2017, 43(3): 279–283. 張博, 龍慧, 江沸菠. 基于相干疊加與模均等矢量分解的光學(xué)圖像加密算法[J]. 電子與信息學(xué)報(bào), 2018, 40(2): 438–446. doi: 10.11999/JEIT170489ZHANG Bo, LONG Hui, and JIANG Feibo. Optical image encryption algorithm based on coherent superposition and equal modulus vector decomposition[J]. Journal of Electronics &Information Technology, 2018, 40(2): 438–446. doi: 10.11999/JEIT170489 朱薇, 楊庚, 陳蕾, 等. 基于混沌的改進(jìn)雙隨機(jī)相位編碼圖像加密算法[J]. 光學(xué)學(xué)報(bào), 2014, 34(6): 0607001. doi: 10.3788/AOS201434.0607001ZHU Wei, YANG Geng, CHEN Lei, et al. An improved image encryption algorithm based on double random phase encoding and chaos[J]. Acta Optica Sinica, 2014, 34(6): 0607001. doi: 10.3788/AOS201434.0607001 陳志剛, 梁滌青, 鄧小鴻, 等. Logistic混沌映射性能分析與改進(jìn)[J]. 電子與信息學(xué)報(bào), 2016, 38(6): 1547–1551.CHEN Zhigang, LIANG Diqing, DENG Xiaohong, et al. Performance analysis and improvement of Logistic chaotic mapping[J]. Journal of Electronics &Information Technology, 2016, 38(6): 1547–1551. LI Chengqing, LIN Dongdong, Lü Jinhu, et al. Cryptanalyzing an image encryption algorithm based on autoblocking and electrocardiography[J]. IEEE MultiMedia, 2018, 25(4): 46–56. doi: 10.1109/MMUL.2018.2873472 HU Xubo, YANG Xiangbo, and LIU Songhao. Optical transmission through generalized third-order Fibonacci multilayers[J]. Modern Physics Letters B, 2014, 28(16): 1450129. doi: 10.1142/S0217984914501292 SINGH R K, KUMAR B, SHAW D K, et al. Level by level image compression-encryption algorithm based on quantum chaos map[J]. Journal of King Saud University - Computer and Information Sciences, 2018, S1319157817304123. doi: 10.1016/j.jksuci.2018.05.012 LARKIN K G, BONE D J, and OLDFIELD M A. Natural demodulation of two-dimensional fringe patterns. I. General background of the spiral phase quadrature transform[J]. Journal of the Optical Society of America A, 2001, 18(8): 1862–1870. doi: 10.1364/JOSAA.18.001862 LU Yuzhen, LI R, and LU Renfu. Fast demodulation of pattern images by spiral phase transform in structured-illumination reflectance imaging for detection of bruises in apples[J]. Computers and Electronics in Agriculture, 2016, 127: 652–658. doi: 10.1016/j.compag.2016.07.012 ZHANG Yushu and XIAO Di. Double optical image encryption using discrete Chirikov standard map and chaos-based fractional random transform[J]. Optics and Lasers in Engineering, 2013, 51(4): 472–480. doi: 10.1016/j.optlaseng.2012.11.001 -