基于改進(jìn)稀疏度自適應(yīng)匹配算法的免授權(quán)非正交多址接入上行傳輸多用戶(hù)檢測(cè)
doi: 10.11999/JEIT190505
-
重慶郵電大學(xué)通信與信息工程學(xué)院 重慶 400065
基金項(xiàng)目: 重慶市科技重大主題專(zhuān)項(xiàng)重點(diǎn)示范項(xiàng)目(cstc2018jszx-cyztzxX0035),重慶市教委科學(xué)技術(shù)研究項(xiàng)目(KJQN201800642)
Multi-User Detection Based on Sparsity Adaptive Matching Pursuit Compressive Sensing for Uplink Grant-free Non-Orthogonal Multiple Access
-
School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
Funds: The Chongqing of Science and Technology Bureau, (cstc2018jszx-cyztzxX0035), The Project of Science and Technology Research Program of Chongqing Education Commission (KJQN201800642)
-
摘要: 免授權(quán)非正交多址接入技術(shù)(NOMA)結(jié)合多用戶(hù)檢測(cè)技術(shù)(MUD),能夠滿(mǎn)足大規(guī)模機(jī)器通信(mMTC)場(chǎng)景中的大連接量、低信令開(kāi)銷(xiāo)和低時(shí)延傳輸?shù)刃枨?。在基于壓縮感知(CS)的MUD算法中,活躍用戶(hù)數(shù)往往作為已知信息,而實(shí)際通信系統(tǒng)中很難準(zhǔn)確估計(jì)?;诖耍撐奶岢鲆环N改進(jìn)稀疏度自適應(yīng)匹配的多用戶(hù)算法(MSAMP-MUD)。該算法首先利用廣義Dice系數(shù)匹配準(zhǔn)則選擇與殘差最匹配的原子,更新用戶(hù)支撐集;當(dāng)殘差能量接近噪聲能量時(shí),終止迭代,從而獲得最終支持集;否則,采取上述準(zhǔn)則更新用戶(hù)支撐集,提高支撐集中活躍用戶(hù)數(shù)估計(jì)精度。在迭代過(guò)程中,根據(jù)最近兩次殘差能量之比,選取不同的迭代步長(zhǎng),以降低檢測(cè)迭代次數(shù)。仿真結(jié)果表明,所提算法與傳統(tǒng)基于CS的MUD算法相比,誤碼率降低約9%,迭代次數(shù)減少約10%。
-
關(guān)鍵詞:
- 大規(guī)模機(jī)器通信 /
- 免授權(quán) /
- 非正交多址 /
- 壓縮感知 /
- 多用戶(hù)檢測(cè)
Abstract: Grant-free Non-Orthogonal Multiple Access (NOMA) combined with Multi-User Detection (MUD) technology can meet the requirements of large connection volume, low signaling overhead and low latency transmission in massive Machine Type Communications (mMTC) scenarios. In the MUD algorithm based on Compressed Sensing (CS), the number of active users is often used as known information, but it is difficult to accurately estimate in the actual communication system. Based on this, this paper proposes a multi-user algorithm (Modified Sparsity Adaptive Matching Pursuit MUD, MSAMP-MUP) to improve the adaptive matching of sparsity. Firstly, the algorithm uses the generalized Dice coefficient matching criterion to select the atom that best matches the residual, and updates the user support set. When the residual energy is close to the noise energy, the iteration is terminated to obtain the final support set; Otherwise, the above criteria are used to update the user support set, and the estimation accuracy of the active users in the support set is improved. In the iteration process, different iteration steps are selected according to the ratio of the last two residual energies, so as to reduce the number of detection iterations. The simulation results show that, compared with the traditional CS-based MUD algorithm, the proposed algorithm reduces the bit error rate by about 9% and the number of iterations by about 10%. -
表 1 系統(tǒng)仿真主要參數(shù)
參數(shù) 參數(shù)值 系統(tǒng)用戶(hù)數(shù)$K$ 200 子載波數(shù)$N$ 100 時(shí)隙數(shù)$J$ 7 閾值${\varepsilon _1}$ 1.2 調(diào)制方式 QPSK 過(guò)載率$\lambda $ 200% 擴(kuò)頻矩陣 Toeplitz矩陣 下載: 導(dǎo)出CSV
-
楊維, 趙懿偉, 侯健琦. 一種改進(jìn)基于門(mén)限的稀疏碼多址接入低復(fù)雜度多用戶(hù)檢測(cè)算法[J]. 電子與信息學(xué)報(bào), 2018, 40(5): 1044–1049. doi: 10.11999/JEIT170647YANG Wei, ZHAO Yiwei, and HOU Jianqi. An improved threshold-based low complexity multiuser detection scheme for sparse code multiple access system[J]. Journal of Electronics &Information Technology, 2018, 40(5): 1044–1049. doi: 10.11999/JEIT170647 FAN Bin, SU Xin, JIE Zeng, et al. Method of CS-IC detection in the grant-free NOMA system[C]. The 12th International Symposium on Medical Information and Communication Technology (ISMICT), Sydney, Australia, 2018: 1–5. doi: 10.1109/ISMICT.2018.8573723. XU Xiao, RAO Xiongbin, and LAU V K N. Active user detection and channel estimation in uplink CRAN systems[C]. 2015 IEEE International Conference on Communications (ICC), London, UK, 2015: 2727–2732. doi: 10.1109/ICC.2015.7248738. 李燕龍, 陳曉, 詹德滿(mǎn), 等. 非正交多址接入中稀疏多用戶(hù)檢測(cè)方法[J]. 西安電子科技大學(xué)學(xué)報(bào): 自然科學(xué)版, 2017, 44(3): 151–156. doi: 10.3969/j.issn.1001-2400.2017.03.026LI Yanlong, CHEN Xiao, ZHAN Deman, et al. Method of sparse multi-user detection in non-orthogonal multiple access[J]. Journal of Xidian University:Natural Science, 2017, 44(3): 151–156. doi: 10.3969/j.issn.1001-2400.2017.03.026 HAN Zhu, LI Husheng, and YIN Wotao. Compressive Sensing for Wireless Networks[M]. Cambridge: Cambridge University Press, 2013. doi: 10.1017/CBO9781139088497. SHIM B and SONG B. Multiuser detection via compressive sensing[J]. IEEE Communications Letters, 2012, 16(7): 972–974. doi: 10.1109/LCOMM.2012.050112.111980 WANG Bichai, DAI Linglong, MIR T, et al. Joint user activity and data detection based on structured compressive sensing for NOMA[J]. IEEE Communications Letters, 2016, 20(7): 1473–1476. doi: 10.1109/LCOMM.2016.2560180 WANG Bichai, DAI Linglong, ZHANG Yuan, et al. Dynamic compressive sensing-based multi-user detection for uplink grant-free NOMA[J]. IEEE Communications Letters, 2016, 20(11): 2320–2323. doi: 10.1109/LCOMM.2016.2602264 OYERINDE O O. Multiuser detector for uplink grant free NOMA systems based on modified subspace pursuit algorithm[C]. The 12th International Conference on Signal Processing and Communication Systems (ICSPCS), Cairns, Australia, 2018: 1–6. doi: 10.1109/ICSPCS.2018.8631787. ABEBE A T and KANG C G. Iterative order recursive least square estimation for exploiting frame-wise sparsity in compressive sensing-based MTC[J]. IEEE Communications Letters, 2016, 20(5): 1018–1021. doi: 10.1109/LCOMM.2016.2539255 HONG J P, CHOI W, and RAO B D. Sparsity controlled random multiple access with compressed sensing[J]. IEEE Transactions on Wireless Communications, 2015, 14(2): 998–1010. doi: 10.1109/TWC.2014.2363165 WANG Chao, CHEN Yang, WU Yiqun, et al. Performance evaluation of grant-free transmission for Uplink URLLC services[C]. The 85th IEEE Vehicular Technology Conference (VTC Spring), Sydney, Australia, 2017: 1–6. doi: 10.1109/VTCSpring.2017.8108593. MASOUDI M, AZARI A, YAVUZ E A, et al. Grant-free radio access IoT networks: Scalability analysis in coexistence scenarios[C]. 2018 IEEE International Conference on Communications (ICC), Kansas City, USA, 2018: 1–7. doi: 10.1109/ICC.2018.8422890. 趙曉娟, 張愛(ài)華, 楊守義, 等. 基于結(jié)構(gòu)化壓縮感知的NOMA系統(tǒng)多用戶(hù)檢測(cè)[J]. 現(xiàn)代電子技術(shù), 2018, 41(5): 1–4. doi: 10.16652/j.issn.1004-373x.2018.05.001ZHAO Xiaojuan, ZHANG Aihua, YANG Shouyi, et al. NOMA system′s multi-user detection based on structurization compressed sensing[J]. Modern Electronics Technique, 2018, 41(5): 1–4. doi: 10.16652/j.issn.1004-373x.2018.05.001 3GPP. 3GPP TR-36.211 V13.2. 0 3rd Generation partnership project; technical specification group radio access network; Evolved Universal Terrestrial Radio Access (E-UTRA); physical channels and modulation[S]. France: 3GPP, 2016. DO T T, GAN L, NGUYEN N, et al. Sparsity adaptive matching pursuit algorithm for practical compressed sensing[C]. The 42nd Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2008: 581–587. doi: 10.1109/ACSSC.2008.5074472. 張宇, 劉雨?yáng)|, 計(jì)釗. 向量相似度測(cè)度方法[J]. 聲學(xué)技術(shù), 2009, 28(4): 532–536. doi: 10.3969/j.issn1000-3630.2009.04.021ZHANG Yu, LIU Yudong, and JI Zhao. Vector similarity measurement method[J]. Technical Acoustics, 2009, 28(4): 532–536. doi: 10.3969/j.issn1000-3630.2009.04.021 MALEKI S, CHEPURI S P, and LEUS G. Optimal hard fusion strategies for cognitive radio networks[C]. 2011 IEEE Wireless Communications and Networking Conference, Cancun, Quintana Roo, Mexico, 2011: 1926–1931. doi: 10.1109/WCNC.2011.5779453. DU Yang, DONG Binhong, CHEN Zhi, et al. Efficient multi-user detection for uplink grant-free NOMA: Prior-information aided adaptive compressive sensing perspective[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(12): 2812–2828. doi: 10.1109/JSAC.2017.2726279 ZHAO Xiaojuan, YANG Shouyi, ZHANG Aihua, et al. A compressive sensing based multi-user detection algorithm for SIMa-NOMA systems[C]. The 15th International Symposium on Wireless Communication Systems (ISWCS), Lisbon, Portugal, 2018: 1–5. doi: 10.1109/ISWCS.2018.8491213. -