一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

基于極坐標正弦變換的Copy-move篡改檢測

馬杰 鐘斌斌 焦亞男

馬杰, 鐘斌斌, 焦亞男. 基于極坐標正弦變換的Copy-move篡改檢測[J]. 電子與信息學(xué)報, 2020, 42(5): 1172-1178. doi: 10.11999/JEIT190481
引用本文: 馬杰, 鐘斌斌, 焦亞男. 基于極坐標正弦變換的Copy-move篡改檢測[J]. 電子與信息學(xué)報, 2020, 42(5): 1172-1178. doi: 10.11999/JEIT190481
Jie MA, Binbin ZHONG, Yanan JIAO. Copy-move Forgeries Detection Based on Polar Sine Transform[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1172-1178. doi: 10.11999/JEIT190481
Citation: Jie MA, Binbin ZHONG, Yanan JIAO. Copy-move Forgeries Detection Based on Polar Sine Transform[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1172-1178. doi: 10.11999/JEIT190481

基于極坐標正弦變換的Copy-move篡改檢測

doi: 10.11999/JEIT190481
詳細信息
    作者簡介:

    馬杰:男,1978年生,教授,研究方向為圖像處理與模式識別

    鐘斌斌:男,1990年生,碩士生,研究方向為數(shù)字圖像處理

    焦亞男:女,1992年生,碩士生,研究方向為數(shù)字圖像處理

    通訊作者:

    馬杰 jma@hebut.edu.cn

  • 中圖分類號: TN911.73; TP391.41

Copy-move Forgeries Detection Based on Polar Sine Transform

  • 摘要:

    該文使用極坐標正弦變換(PST)特征對圖像進行Copy-move篡改檢測,將待檢測圖像轉(zhuǎn)換成灰度圖并進行PST特征提取,并采用改進的快速近似最近鄰搜索算法PatchMatch對特征描述符進行匹配,以克服匹配全局描述符帶來的處理時間較長的缺點。實驗分析表明,該文所提方法不僅對圖像的線性Copy-move篡改和旋轉(zhuǎn)干擾篡改有很好的效果,而且對噪聲和JPEG壓縮干擾篡改也具有一定的魯棒性。最后對綜合干擾篡改實驗測試發(fā)現(xiàn),在綜合篡改幅度較小的情況下,準確率可以達到98.0%。

  • 圖  1  圖像篡改與偏移映射

    圖  2  PatchMatch算法

    圖  3  改進后的傳播

    圖  4  PatchMatch算法匹配

    圖  5  后期處理

    圖  6  篡改檢測流程圖

    圖  7  篡改檢測

    圖  8  旋轉(zhuǎn)檢測

    圖  9  添加噪聲檢測

    圖  10  JPEG壓縮檢測

    圖  11  綜合篡改檢測

    圖  12  3種算法在不同干擾下的準確率

  • AL-QERSHI O M and KHOO B E. Passive detection of copy-move forgery in digital images: State-of-the-art[J]. Forensic Science International, 2013, 231(1/3): 284–295. doi: 10.1016/j.forsciint.2013.05.027
    ZHOU Xinmin, WANG Kaiyuan, and FU Jian. A method of SIFT simplifying and matching algorithm improvement[C]. IEEE 2016 International Conference on Industrial Informatics - Computing Technology, Intelligent Technology, Industrial Information Integration (ICIICII), Wuhan, China, 2016: 73–77. doi: 10.1109/ICIICII.2016.0029.
    AHSAN A M and MOHAMAD D B. Machine learning technique for object detection based on SURF feature[J]. International Journal of Computational Vision and Robotics, 2017, 7(1/2): 6–19. doi: 10.1504/IJCVR.2017.081232
    FARID H. Image forgery detection[J]. IEEE Signal Processing Magazine, 2009, 26(2): 16–25. doi: 10.1109/MSP.2008.931079
    PIVA A. An overview on image forensics[J]. ISRN Signal Processing, 2013, 2013: 496701.
    AL-QERSHI O M and KHOO B E. Enhanced matching method for copy-move forgery detection by means of Zernike moments[C]. The 13th International Workshop on Digital-Forensics and Watermarking, Taipei, China, 2014: 485–497. doi: 10.1007/978-3-319-19321-2_37.
    閆旭, 姜威, 賁晛燁. 基于改進Hu不變矩的圖像篡改檢測算法[J]. 光學(xué)技術(shù), 2018, 44(2): 171–176. doi: 10.13741/j.cnki.11-1879/o4.2018.02.008

    YAN Xu, JIANG Wei, and BEN Xianye. Image tamper detection algorithm based on improved Hu invariant moments[J]. Optical Technique, 2018, 44(2): 171–176. doi: 10.13741/j.cnki.11-1879/o4.2018.02.008
    AMERINI I, BALLAN L, CALDELLI R, et al. A SIFT-based forensic method for copy–move attack detection and transformation recovery[J]. IEEE Transactions on Information Forensics and Security, 2011, 6(3): 1099–1110. doi: 10.1109/TIFS.2011.2129512
    MUHAMMAD G, HUSSAIN M, KHAWAJI K, et al. Blind copy move image forgery detection using dyadic undecimated wavelet transform[C]. The 17th IEEE International Conference on Digital Signal Processing, Corfu, Greece, 2011. doi: 10.1109/ICDSP.2011.6004974.
    CHRISTLEIN V, RIESS C, JORDAN J, et al. An evaluation of popular copy-move forgery detection approaches[J]. IEEE Transactions on Information Forensics and Security, 2012, 7(6): 1841–1854. doi: 10.1109/TIFS.2012.2218597
    YAP P T, JIANG Xudong, and KOT A C. Two-dimensional polar harmonic transforms for invariant image representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(7): 1259–1270. doi: 10.1109/TPAMI.2009.119
    李揚, 吳敏淵, 顏佳. 基于改進PatchMatch的自相似性圖像超分辨率算法[J]. 計算機應(yīng)用研究, 2018, 35(4): 1231–1235. doi: 10.3969/j.issn.1001-3695.2018.04.058

    LI Yang, WU Minyuan, and YAN Jia. Self-similarity based image super-resolution algorithm using optimized PatchMatch[J]. Application Research of Computers, 2018, 35(4): 1231–1235. doi: 10.3969/j.issn.1001-3695.2018.04.058
    BARNES C, SHECHTMAN E, FINKELSTEIN A, et al. PatchMatch: A randomized correspondence algorithm for structural image editing[J]. ACM Transactions on Graphics, 2009, 28(3): No. 24. doi: 10.1145/1531326.1531330
    BARNES C, SHECHTMAN E, GOLDMAN D B, et al. The generalized PatchMatch correspondence algorithm[C]. The 11th European Conference on Computer Vision–ECCV 2010, Heraklion, Greece, 2010: 29–43. doi: 10.1007/978-3-642-15558-1_3.
    COZZOLINO D, POGGI G, and VERDOLIVA L. Efficient dense-field Copy-move forgery detection[J]. IEEE Transactions on Information Forensics and Security, 2015, 10(11): 2284–2297. doi: 10.1109/TIFS.2015.2455334
    EHRET T and ARIAS P. On the convergence of PatchMatch and its variants[C]. 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, USA, 2018: 1121–1129. doi: 10.1109/CVPR.2018.00123.
    EHRET T. Automatic detection of internal copy-move forgeries in images[J]. Image Processing on Line, 2018(8): 167–191. doi: 10.5201/ipol.2018.213
  • 加載中
圖(12)
計量
  • 文章訪問數(shù):  2477
  • HTML全文瀏覽量:  1205
  • PDF下載量:  58
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-06-28
  • 修回日期:  2019-11-05
  • 網(wǎng)絡(luò)出版日期:  2019-11-28
  • 刊出日期:  2020-06-04

目錄

    /

    返回文章
    返回