基于期望最大化算法的捷變頻聯(lián)合正交頻分復用雷達高速多目標參數(shù)估計
doi: 10.11999/JEIT190474
-
西安電子科技大學雷達信號處理國家重點實驗室 西安 710071
High Speed Multi-target Parameter Estimation for FA-OFDM Radar Based on Expectation Maximization Algorithm
-
National Key Laboratory of Radar Signal Processing, Xidian University, Xi’an 710071, China
-
摘要:
參數(shù)估計對雷達的目標檢測和識別有著重要的意義。該文提出了一種基于期望最大化(EM)算法的捷變頻聯(lián)合正交頻分復用(FA-OFDM)雷達高速多目標參數(shù)估計方法。首先,將窄帶正交頻分復用(OFDM)信號與傳統(tǒng)捷變頻雷達相結(jié)合,在每個脈沖寬度內(nèi)同時發(fā)射多個載頻隨機跳變的子載波。然后,對單個脈沖內(nèi)所有子載波的回波進行脈沖壓縮和稀疏重構(gòu)處理,得到1維高分辨距離。進一步地,將多個目標在不同脈沖時刻的高分辨距離信息構(gòu)成觀測數(shù)據(jù),建立混合高斯模型。采用EM算法對模型參數(shù)和多個目標的距離、速度進行估計,并同時擬合多條時間-距離直線。直線斜率對應(yīng)目標速度,直線縱軸截距對應(yīng)目標初始距離。最終,分別分析了信噪比(SNR)對檢測概率以及目標速度對相對估計誤差的影響。仿真實驗驗證了所提算法的有效性。
-
關(guān)鍵詞:
- 捷變頻聯(lián)合正交頻分復用雷達 /
- 參數(shù)估計 /
- 高速多目標 /
- EM算法
Abstract:Parameter estimation is very important for radar to detect and recognize targets. In this paper, a high speed multi-target parameter estimation method for Frequency Agility-Orthogonal Frequency Division Multiplexing(FA-OFDM) radar based on Expectation Maximization(EM) algorithm is proposed. Firstly, a promising idea is to combine narrowband Orthogonal Frequency Division Multiplexing (OFDM) signals and frequency agility, multiple subcarriers that frequency hopping randomly are simultaneously transmitted within each pulse width. Then, all echoes of a single pulse are compressed and sparsely reconstructed to achieve 1-demension high range resolution. Subsequently, the high resolution range of multiple targets at each pulse time are obtained to constitute the observation data, and Gauss mixture model is established. EM algorithm is applied to estimate the parameters of the model and the range and velocity of multiple targets. Also, multiple time-range lines are fitted at the same time, and the slope of the line corresponds to the velocity of the target, as well as, the vertical intercept of the line corresponds to the initial range of the target, separately. Finally, the influence of the Signal-to-Noise Ratio (SNR) on detection probability and the target velocity on relative error of estimation are analyzed, respectively. Simulations are provided to verify the effectiveness of the proposal.
-
表 1 仿真參數(shù)
參數(shù) 數(shù)值 參數(shù) 數(shù)值 脈沖寬度 4 μs 脈沖重復頻率 25 kHz 信號帶寬 24 MHz 采樣頻率 48 MHz 子載波個數(shù) 64 中心載頻 14 GHz 跳頻總數(shù) 128 跳頻帶寬 20 MHz 脈沖總數(shù) 64 信噪比 –12 dB 目標距離 [3994,4001,4006] m 目標速度 [600,1220,5800] m/s 下載: 導出CSV
-
霍凱, 趙晶晶. OFDM新體制雷達研究現(xiàn)狀與發(fā)展趨勢[J]. 電子與信息學報, 2015, 37(11): 2776–2789. doi: 10.11999/JEIT150335HUO Kai and ZHAO Jingjing. The Development and prospect of the new OFDM radar[J]. Journal of Electronics &Information Technology, 2015, 37(11): 2776–2789. doi: 10.11999/JEIT150335 肖博, 霍凱, 劉永祥. 雷達通信一體化研究現(xiàn)狀與發(fā)展趨勢[J]. 電子與信息學報, 2019, 41(3): 739–750. doi: 10.11999/JEIT180515XIAO Bo, HUO Kai, and LIU Yongxiang. Development and prospect of radar and communication integration[J]. Journal of Electronics &Information Technology, 2019, 41(3): 739–750. doi: 10.11999/JEIT180515 WANG Jun, ZHANG Bocheng, and LEI Peng. Ambiguity function analysis for OFDM radar signals[C]. 2016 CIE International Conference on Radar, Guangzhou, China, 2016: 1–5. doi: 10.1109/RADAR.2016.8059592. 劉冰凡, 陳伯孝. 基于OFDM-LFM信號的MIMO雷達通信一體化信號共享設(shè)計研究[J]. 電子與信息學報, 2019, 41(4): 801–808. doi: 10.11999/JEIT180547LIU Bingfan and CHEN Baixiao. Integration of MIMO Radar and Communication with OFDM-LFM Signals[J]. Journal of Electronics &Information Technology, 2019, 41(4): 801–808. doi: 10.11999/JEIT180547 SCHWEIZER B, SCHINDLER D, KNILL C, et al. Expanding the unambiguous velocity limitation of the stepped-carrier OFDM radar scheme[C]. The 15th European Radar Conference, Madrid, Spain, 2018: 22–25. doi: 10.23919/EuRAD.2018.8546621. 黃瑞, 杜小勇, 胡衛(wèi)東. OFDM雷達多目標運動參數(shù)的近似最大似然估計[J]. 雷達學報, 2018, 7(4): 507–513. doi: 10.12000/JR17116HUANG Rui, DU Xiaoyong, and HU Weidong. Approximate maximum likelihood estimator of multi-target motion parameters for orthogonal frequency division multiplexing radar[J]. Journal of Radars, 2018, 7(4): 507–513. doi: 10.12000/JR17116 LIU Yongjun, LIAO Guisheng, and YANG Zhiwei. Range and angle estimation for MIMO-OFDM integrated radar and communication systems[C]. 2016 CIE International Conference on Radar, Guangzhou, China, 2016: 1–4. doi: 10.1109/RADAR.2016.8059539. LELLOUCH G, TRAN P, PRIBIC R, et al. OFDM waveforms for frequency agility and opportunities for Doppler processing in radar[C]. 2008 IEEE Radar Conference, Rome, Italy, 2008: 1–6. doi: 10.1109/RADAR.2008.4720798. SCHWEIZER B, KNILL C, SCHINDLER D, et al. Stepped-Carrier OFDM-Radar processing scheme to retrieve high-resolution range-velocity profile at low sampling rate[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(3): 1610–1618. doi: 10.1109/TMTT.2017.2751463 LELLOUCH G, MISHRA A K, and INGGS M. Stepped OFDM radar technique to resolve range and Doppler simultaneously[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 937–950. doi: 10.1109/TAES.2014.130753 KNILL C, SCHWEIZER B, ROOS F, et al. High range and Doppler resolution by application of compressed sensing using low baseband bandwidth OFDM radar[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(7): 3535–3546. doi: 10.1109/TMTT.2018.2830389 LI Hongtao, WANG Chaoyu, WANG Ke, et al. High resolution range profile of compressive sensing radar with low computational complexity[J]. IET Radar, Sonar & Navigation, 2015, 9(8): 984–990. doi: 10.1049/iet-rsn.2014.0454 KNILL C, ROOS F, SCHWEIZER B, et al. Random multiplexing for an MIMO-OFDM radar with compressed sensing-based reconstruction[J]. IEEE Microwave and Wireless Components Letters, 2019, 29(4): 300–302. doi: 10.1109/LMWC.2019.2901405 QUAN Yinghui, LI Yachao, WU Yaojun, et al. Moving target detection for frequency agility radar by sparse reconstruction[J]. Review of Scientific Instruments, 2016, 87(9): 094703. doi: 10.1063/1.4962700 QUAN Yinghui, WU Yaojun, LI Yachao, et al. Range-Doppler reconstruction for frequency agile and PRF-jittering radar[J]. IET Radar, Sonar & Navigation, 2018, 12(3): 348–352. doi: 10.1049/iet-rsn.2017.0421 CHOI J. Sparse signal detection for space shift keying using the Monte Carlo EM algorithm[J]. IEEE Signal Processing Letters, 2016, 23(7): 974–978. doi: 10.1109/LSP.2016.2577707 李航. 統(tǒng)計學習方法[M]. 北京: 清華大學出版社, 2012: 162–165. -