一種基于異步傳感器網(wǎng)絡的空間目標分布式跟蹤方法
doi: 10.11999/JEIT190460
-
1.
火箭軍工程大學 西安 710025
-
2.
宇航動力學國家重點實驗室 西安 710043
A Distributed Space Target Tracking Algorithm Based on Asynchronous Multi-sensor Networks
-
1.
Graduate School, Rocket Force University of Engineering, Xi’an 710025, China
-
2.
State Key Laboratory of Astronautic Dynamics, Xi’an 710043, China
-
摘要:
為解決傳感器網(wǎng)絡在空間目標分布式跟蹤過程中的異步采樣及通信延遲問題,該文提出一種異步分布式信息濾波算法(ADIF)。首先,局部傳感器與相鄰節(jié)點之間以一定的拓撲結構傳遞帶采樣時標的局部狀態(tài)信息和量測信息,然后將收到的異步信息按時間排序,使用ADIF算法進行計算,分別對目標狀態(tài)進行估計。該方法實現(xiàn)簡單,傳感器間通信的次數(shù)少,支持網(wǎng)絡拓撲的實時變化,適用于空間目標監(jiān)測中的多目標跟蹤問題。該文分別對空間單目標、多目標跟蹤進行了仿真,結果表明算法可以有效解決異步傳感器濾波問題,分布式濾波精度一致逼近于集中式結果。
-
關鍵詞:
- 跟蹤算法 /
- 分布式傳感器 /
- 異步數(shù)據(jù)融合 /
- 空間目標跟蹤
Abstract:To solve the problem of asynchronous sampling and communication delay of sensor network in space target tracking, an Asynchronous Distributed algorithm based on Information Filtering (ADIF) is proposed. First, local state information and measurement information with sampling time is transmitted between local sensor and adjacent nodes in a certain topology structure. Then, the local sensor sorts the received asynchronous information by time, and ADIF algorithm is used to calculate the target state respectively. This method is simple to implement, the frequency of communication between sensors is small, and it supports the real-time change of network topology, which is suitable for multi-target tracking. In this paper, single target and multi-target tracking are simulated respectively. The results show that the algorithm can effectively solve the problem of asynchronous sensor filtering, and the distributed filtering accuracy converges to the centralized result.
-
表 1 目標初始軌道
歷元 X(m) Y(m) Z(m) Vx(m·s–1) Vy(m·s–1) Vz(m·s–1) 2019-04-25 04:11:56 980093.466 1709342.512 6698030.714 6293.741438 3734.785328 –1863.584480 下載: 導出CSV
表 2 天基光學相機軌道根數(shù)
天基相機 歷元 a(km) e i(°) Ω(°) ω(°) M(°) P1 2019-4-25 04:00:00 6878.137 0.000011 45.0 359.8 0.0 339.8 P2 2019-4-25 04:00:00 6778.137 0.000010 63.4 250.1 10.2 35.0 下載: 導出CSV
表 3 各測站集中式與分布式濾波位置平均RMSE
濾波類型 P1 P2 S1 S2 S3 位置 ADIF(m) 11.4389 10.7740 11.6683 11.3893 10.9962 EIF(m) 9.6533 速度 ADIF(m/s) 0.4550 0.4563 0.4575 0.4564 0.4564 EIF(m/s) 0.3973 下載: 導出CSV
表 4 目標2初始軌道
歷元 X(m) Y(m) Z(m) Vx(m·s–1) Vy(m·s–1) Vz(m·s–1) 2019-04-25 04:00:55 6985582.028 542743.450 1003434.795 –966.305250 –1160.131728 –7350.707562 下載: 導出CSV
-
JIA Bin, XIN Ming, PHAM K, et al. Multiple sensor estimation using a high-degree cubature information filter[C]. SPIE 8739, Sensors and Systems for Space Applications VI, Baltimore, USA, 2013: 87390T. doi: 10.1117/12.2015546. LIU Song, SHEN-TU Han, CHEN Huajie, et al. Asynchronous multi-sensor fusion multi-target tracking method[C]. The 14th IEEE International Conference on Control and Automation, Anchorage, USA, 2018: 459–463. KAMAL A T, FARRELL J A, and ROY-CHOWDHURY A K. Information weighted consensus[C]. The 51st IEEE Conference on Decision and Control (CDC), Maui, USA, 2012: 2732–2737. 汪晗, 成昂軒, 王坤, 等. 無線傳感器網(wǎng)絡分布式迭代定位誤差控制算法[J]. 電子與信息學報, 2018, 40(1): 72–78. doi: 10.11999/JEIT170344WANG Han, CHENG Angxuan, WANG Kun, et al. Error control algorithm of distributed localization in wireless sensor networks[J]. Journal of Electronics &Information Technology, 2018, 40(1): 72–78. doi: 10.11999/JEIT170344 CHEN Bo, HU Guoqiang, HO D W C, et al. Distributed Kalman filtering for time-varying discrete sequential systems[J]. Automatica, 2019, 99: 228–236. doi: 10.1016/j.automatica.2018.10.025 BATTISTELLI G, CHISCI L, and SELVI D. A distributed Kalman filter with event-triggered communication and guaranteed stability[J]. Automatica, 2018, 93: 75–82. doi: 10.1016/j.automatica.2018.03.005 OLFATI-SABER R. Distributed Kalman filtering for sensor networks[C]. The 46th IEEE Conference on Decision and Control, New Orleans, USA, 2007: 5492–5498. OLFATI-SABER R. Kalman-Consensus Filter: Optimality, stability, and performance[C]. The 48th IEEE Conference on Decision and Control, Shanghai, China, 2009: 7036–7042. CATTIVELLI F S and SAYED A H. Diffusion strategies for distributed Kalman filtering and smoothing[J]. IEEE Transactions on Automatic Control, 2010, 55(9): 2069–2084. doi: 10.1109/TAC.2010.2042987 HU Jinwen, XIE Lihua, and ZHANG Cishen. Diffusion Kalman filtering based on covariance intersection[J]. IEEE Transactions on Signal Processing, 2012, 60(2): 891–902. doi: 10.1109/TSP.2011.2175386 WANG Shaocheng and REN Wei. On the convergence conditions of distributed dynamic state estimation using sensor networks: A unified framework[J]. IEEE Transactions on Control Systems Technology, 2018, 26(4): 1300–1316. doi: 10.1109/TCST.2017.2715849 KOWALCZUK Z and DOM?ALSKI M. Asynchronous distributed state estimation for continuous-time stochastic processes[J]. International Journal of Applied Mathematics and Computer Science, 2013, 23(2): 327–339. doi: 10.2478/amcs-2013-0025 楚天鵬. 多光電跟蹤設備異步序貫分布式目標跟蹤算法[J]. 紅外與激光工程, 2017, 46(9): 0926002. doi: 10.3788/IRLA201746.0926002CHU Tianpeng. Distributed asynchronous sequential fusion algorithm for multiple optic-electronic tracking devices[J]. Infrared and Laser Engineering, 2017, 46(9): 0926002. doi: 10.3788/IRLA201746.0926002 ZHU Guangming, ZHOU Fan, XIE Li, et al. Sequential asynchronous filters for target tracking in wireless sensor networks[J]. IEEE Sensors Journal, 2014, 14(9): 3174–3182. doi: 10.1109/JSEN.2014.2325400 SHARMA J, STOKES G H, VON BRAUN C, et al. Toward operational space-based space surveillance[J]. Lincoln Laboratory Journal, 2002, 13(2): 309–334. JULIER S J and UHLMANN J K. General Decentralized Data Fusion with Covariance Intersection[M]. LLINAS J, HALL D, and LIGGINS II M. Handbook of Multisensor Data Fusion. 2nd ed. Boca Raton, USA: CRC Press, 2001: 319–342. JIA Bin, XIN Ming, and CHENG Yang. Multiple sensor estimation using the sparse Gauss-Hermite quadrature information filter[C]. 2012 American Control Conference, Montreal, Canada, 2012: 5544–5549. 楊瀟, 謝京穩(wěn), 郭軍海, 等. 高速采樣測量數(shù)據(jù)處理方法研究[J]. 飛行器測控學報, 2008, 27(5): 49–52.YANG Xiao, XIE Jingwen, GUO Junhai, et al. Study on methods of high sampling rate data processing[J]. Journal of Spacecraft TT&C Technology, 2008, 27(5): 49–52. -